Do you want to publish a course? Click here

Calculating statistical distributions from operator relations: the statistical distributions of various intermediate statistics

107   0   0.0 ( 0 )
 Added by Mi Xie
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we give a general discussion on the calculation of the statistical distribution from a given operator relation of creation, annihilation, and number operators. Our result shows that as long as the relation between the number operator and the creation and annihilation operators can be expressed as $a^{dagger}b=Lambdaleft(Nright) $ or $N=Lambda^{-1} left( a^{dagger}bright)$, where $N$, $a^{dagger}$, and $b$ denote the number, creation, and annihilation operators, i.e., $N$ is a function of quadratic product of the creation and annihilation operators, the corresponding statistical distribution is the Gentile distribution, a statistical distribution in which the maximum occupation number is an arbitrary integer. As examples, we discuss the statistical distributions corresponding to various operator relations. In particular, besides Bose-Einstein and Fermi-Dirac cases, we discuss the statistical distributions for various schemes of intermediate statistics, especially various $q$-deformation schemes. Our result shows that the statistical distributions corresponding to various $q$-deformation schemes are various Gentile distributions with different maximum occupation numbers which are determined by the deformation parameter $q$. This result shows that the results given in much literature on the $q$-deformation distribution are inaccurate or incomplete.



rate research

Read More

164 - L. Velazquez , S. Curilef 2009
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a complementarity is expressed as the impossibility of perform an exact simultaneous determination of the system energy and temperature by using an experimental procedure based on the thermal equilibrium with other system regarded as a measure apparatus (thermometer). In this work, we provide a simple generalization of this latter approach with the consideration of a thermodynamic situation with several control parameters.
87 - Xiangyu Cao 2020
It was recently conjectured that in generic quantum many-body systems, the spectral density of local operators has the slowest high-frequency decay as permitted by locality. We show that the infinite-temperature version of this universal operator growth hypothesis holds for the quantum Ising spin model in $d ge 2$ dimensions, and for the chaotic Ising chain (with longitudinal and transverse fields) in one dimension. Moreover, the disordered chaotic Ising chain that exhibits many-body localization can have the same high-frequency spectral density decay as thermalizing models. Our argument is statistical in nature, and is based on the observation that the moments of the spectral density can be written as a sign-problem-free sum over paths of Pauli string operators.
We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. While the value of the index $alpha $ fixes the distributions power-law exponent, that for the dual index $2-alpha $ ensures the extensivity of the deformed entropy.
We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.
The semi-inclusive properties of the system of neutral and charged particles with net charge equal to zero are considered in the grand canonical, canonical and micro-canonical ensembles as well as in micro-canonical ensemble with scaling volume fluctuations. Distributions of neutral particle multiplicity and charged particle momentum are calculated as a function of the number of charged particles. Different statistical ensembles lead to qualitatively different dependencies. They are being compared with the corresponding experimental data on multi-hadron production in $p+p$ interactions at high energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا