Do you want to publish a course? Click here

Convergence of Derivative Expansion in Supersymmetric Functional RG Flows

137   0   0.0 ( 0 )
 Added by Marianne Heilmann
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We confirm the convergence of the derivative expansion in two supersymmetric models via the functional renormalization group method. Using pseudo-spectral methods, high-accuracy results for the lowest energies in supersymmetric quantum mechanics and a detailed description of the supersymmetric analogue of the Wilson-Fisher fixed point of the three-dimensional Wess-Zumino model are obtained. The superscaling relation proposed earlier, relating the relevant critical exponent to the anomalous dimension, is shown to be valid to all orders in the supercovariant derivative expansion and for all $d ge 2$.



rate research

Read More

We revisit the leading irrelevant deformation of $mathcal{N}=4$ Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on $S^3 times mathbb{R}$. We are able to write a closed form expression of the classical action thanks to a formalism that realizes eight supercharges off shell. We then investigate integrability of the spectral problem, by studying the spin-chain Hamiltonian in planar perturbation theory. While there are some structural indications that a suitably defined deformation might preserve integrability, we are unable to settle this question by our two-loop calculation; indeed up to this order we recover the integrable Hamiltonian of undeformed $mathcal{N}=4$ SYM due to accidental symmetry enhancement. We also comment on the holographic interpretation of the theory.
We show that there is a non-trivial relationship between the dilaton of IIB supergravity, and the coset of scalar fields in five-dimensional, gauged N=8 supergravity. This has important consequences for the running of the gauge coupling in massive perturbations of the AdS/CFT correspondence. We conjecture an exact analytic expression for the ten-dimensional dilaton in terms of five-dimensional quantities, and we test this conjecture. Specifically, we construct a family of solutions to IIB supergravity that preserve half of the supersymmetries, and are lifts of supersymmetric flows in five-dimensional, gauged N=8 supergravity. Via the AdS/CFT correspondence these flows correspond to softly broken N=4, large N Yang-Mills theory on part of the Coulomb branch of N=2 supersymmetric Yang-Mills. Our solutions involve non-trivial backgrounds for all the tensor gauge fields as well as for the dilaton and axion.
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectured to coincide with the hierarchy of renormalization-group flows among the SCFTs. In this paper we test this conjecture for $G=mathrm{SU}(k)$, where AdS$_7$ duals exist in IIA. We work with a seven-dimensional gauged supergravity, consisting of the gravity multiplet and two $mathrm{SU}(k)$ non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS$_7$ vacua, determined by two nilpotent elements, which are naturally interpreted as IIA AdS$_7$ solutions. The BPS equations for domain walls connecting two such vacua can be solved analytically, up to a Nahm equation with certain boundary conditions. The latter admit a solution connecting two vacua if and only if the corresponding nilpotent elements are related by the natural partial ordering, in agreement with the field theory conjecture.
Motivated by its potential use in constraining the structure of 6D renormalization group flows, we determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking in 6D conformal field theories (CFTs). While our analysis is largely independent of supersymmetry, we also investigate the case of 6D superconformal field theories (SCFTs), where we use the effective action to present a streamlined proof of the 6D a-theorem for tensor branch flows, as well as to constrain properties of Higgs branch and mixed branch flows. An analysis of Higgs branch flows in some examples leads us to conjecture that in 6D SCFTs, an interacting dilaton effective theory may be possible even when certain 4-dilaton 4-derivative interaction terms vanish, because of large momentum modifications to 4-point dilaton scattering amplitudes. This possibility is due to the fact that in all known $D > 4$ CFTs, the approach to a conformal fixed point involves effective strings which are becoming tensionless.
179 - N. Defenu , A. Codello 2017
Scalar field theories with $mathbb{Z}_{2}$-symmetry are the traditional playground of critical phenomena. In this work these models are studied using functional renormalization group (FRG) equations at order $partial^2$ of the derivative expansion and, differently from previous approaches, the spike plot technique is employed to find the relative scaling solutions in two and three dimensions. The anomalous dimension of the first few universality classes in $d=2$ is given and the phase structure predicted by conformal field theory is recovered (without the imposition of conformal invariance), while in $d=3$ a refined view of the standard Wilson-Fisher fixed point is found. Our study enlightens the strength of shooting techniques in studying FRG equations, suggesting them as candidates to investigate strongly non-perturbative theories even in more complex cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا