No Arabic abstract
We revisit the leading irrelevant deformation of $mathcal{N}=4$ Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on $S^3 times mathbb{R}$. We are able to write a closed form expression of the classical action thanks to a formalism that realizes eight supercharges off shell. We then investigate integrability of the spectral problem, by studying the spin-chain Hamiltonian in planar perturbation theory. While there are some structural indications that a suitably defined deformation might preserve integrability, we are unable to settle this question by our two-loop calculation; indeed up to this order we recover the integrable Hamiltonian of undeformed $mathcal{N}=4$ SYM due to accidental symmetry enhancement. We also comment on the holographic interpretation of the theory.
We show that there is a non-trivial relationship between the dilaton of IIB supergravity, and the coset of scalar fields in five-dimensional, gauged N=8 supergravity. This has important consequences for the running of the gauge coupling in massive perturbations of the AdS/CFT correspondence. We conjecture an exact analytic expression for the ten-dimensional dilaton in terms of five-dimensional quantities, and we test this conjecture. Specifically, we construct a family of solutions to IIB supergravity that preserve half of the supersymmetries, and are lifts of supersymmetric flows in five-dimensional, gauged N=8 supergravity. Via the AdS/CFT correspondence these flows correspond to softly broken N=4, large N Yang-Mills theory on part of the Coulomb branch of N=2 supersymmetric Yang-Mills. Our solutions involve non-trivial backgrounds for all the tensor gauge fields as well as for the dilaton and axion.
We confirm the convergence of the derivative expansion in two supersymmetric models via the functional renormalization group method. Using pseudo-spectral methods, high-accuracy results for the lowest energies in supersymmetric quantum mechanics and a detailed description of the supersymmetric analogue of the Wilson-Fisher fixed point of the three-dimensional Wess-Zumino model are obtained. The superscaling relation proposed earlier, relating the relevant critical exponent to the anomalous dimension, is shown to be valid to all orders in the supercovariant derivative expansion and for all $d ge 2$.
With the purpose of holographically describing flows from a large family of four dimensional ${cal N}=1$ and ${cal N}=2$ conformal field theories, we discuss truncations of seven dimensional supergravity to five dimensions. We write explicitly the reduced gauged supergravity and find BPS equations for simple configurations. Lifting these flows to eleven dimensions or Massive IIA supergravity, we present string duals to RG flows from strongly coupled conformal theories when deformed by marginal and/or relevant operators. We further discuss observables common to infinite families of ${cal N}=1$ and ${cal N}=2$ QFTs in this context.
We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared $AdS_4$ fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with $AdS_2 times mathbb{R}^2$. We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.
We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the $phi^4$ theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground state of the theory. Our approach uses Nielsens geometric method, which translates into working out the geodesic equation arising from a certain cost functional. We present a general method, making use of integral transforms, to do the required lattice sums analytically and give explicit expressions for the $d=2,3$ cases. Our method enables a study of circuit complexity in the epsilon expansion for the Wilson-Fisher fixed point. We find that with increasing dimensionality the circuit depth increases in the presence of the $phi^4$ interaction eventually causing the perturbative calculation to breakdown. We discuss how circuit complexity relates with the renormalization group.