Do you want to publish a course? Click here

Convergence of loop erased random walks on a planar graph to a chordal SLE(2) curve

119   0   0.0 ( 0 )
 Added by Hiroyuki Suzuki
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we consider the natural random walk on a planar graph and scale it by a small positive number $delta$. Given a simply connected domain $D$ and its two boundary points $a$ and $b$, we start the scaled walk at a vertex of the graph nearby $a$ and condition it on its exiting $D$ through a vertex nearby $b$, and prove that the loop erasure of the conditioned walk converges, as $delta downarrow 0$, to the chordal SLE$_{2}$ that connects $a$ and $b$ in $D$, provided that an invariance principle is valid for both the random walk and the dual walk of it.



rate research

Read More

106 - Michel Bauer 2008
We discuss properties of dipolar SLE(k) under conditioning. We show that k=2, which describes continuum limits of loop erased random walks, is characterized as being the only value of k such that dipolar SLE conditioned to stop on an interval coincides with dipolar SLE on that interval. We illustrate this property by computing a new bulk passage probability for SLE(2).
The determination of the Hausdorff dimension of the scaling limit of loop-erased random walk is closely related to the study of the one-point function of loop-erased random walk, i.e., the probability a loop-erased random walk passes through a given vertex. Recent work in the theoretical physics literature has investigated the Hausdorff dimension of loop-erased random walk in three dimensions by applying field theory techniques to study spin systems that heuristically encode the one-point function of loop-erased random walk. Inspired by this, we introduce two different spin systems whose correlation functions can be rigorously shown to encode the one-point function of loop-erased random walk.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Kozma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
97 - Mingchang Liu , Hao Wu 2021
We consider uniform spanning tree (UST) in topological polygons with $2N$ marked points on the boundary with alternating boundary conditions. In [LPW21], the authors derive the scaling limit of the Peano curve in the UST. They are variants of SLE$_8$. In this article, we derive the scaling limit of the loop-erased random walk branch (LERW) in the UST. They are variants of SLE$_2$. The conclusion is a generalization of [HLW20,Theorem 1.6] where the authors derive the scaling limit of the LERW branch of UST when $N=2$. When $N=2$, the limiting law is SLE$_2(-1,-1; -1, -1)$. However, the limiting law is nolonger in the family of SLE$_2(rho)$ process as long as $Nge 3$.
70 - Peter Nandori , Zeyu Shen 2016
We prove that the local time process of a planar simple random walk, when time is scaled logarithmically, converges to a non-degenerate pure jump process. The convergence takes place in the Skorokhod space with respect to the $M1$ topology and fails to hold in the $J1$ topology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا