No Arabic abstract
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Kozma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
Consider a system of coalescing random walks where each individual performs random walk over a finite graph G, or (more generally) evolves according to some reversible Markov chain generator Q. Let C be the first time at which all walkers have coalesced into a single cluster. C is closely related to the consensus time of the voter model for this G or Q. We prove that the expected value of C is at most a constant multiple of the largest hitting time of an element in the state space. This solves a problem posed by Aldous and Fill and gives sharp bounds in many examples, including all vertex-transitive graphs. We also obtain results on the expected time until only k>1 clusters remain. Our proof tools include a new exponential inequality for the meeting time of a reversible Markov chain and a deterministic trajectory, which we believe to be of independent interest.
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, we show that these random height functions converge to a Gaussian Free Field as predicted by Kenyon and Okounkov [28]. A key ingredient of our proof is a dynamical version of the discrete loop equations as introduced by Borodin, Guionnet and Gorin [5], which might be of independent interest.
We prove a conjecture raised by the work of Diaconis and Shahshahani (1981) about the mixing time of random walks on the permutation group induced by a given conjugacy class. To do this we exploit a connection with coalescence and fragmentation processes and control the Kantorovitch distance by using a variant of a coupling due to Oded Schramm. Recasting our proof in the language of Ricci curvature, our proof establishes the occurrence of a phase transition, which takes the following form in the case of random transpositions: at time $cn/2$, the curvature is asymptotically zero for $cle 1$ and is strictly positive for $c>1$.
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Surprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or non-lazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.