Do you want to publish a course? Click here

Logarithmic scaling of planar random walks local times

71   0   0.0 ( 0 )
 Added by P\\'eter N\\'andori
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the local time process of a planar simple random walk, when time is scaled logarithmically, converges to a non-degenerate pure jump process. The convergence takes place in the Skorokhod space with respect to the $M1$ topology and fails to hold in the $J1$ topology.



rate research

Read More

Fix $p>1$, not necessarily integer, with $p(d-2)<d$. We study the $p$-fold self-intersection local time of a simple random walk on the lattice $Z^d$ up to time $t$. This is the $p$-norm of the vector of the walkers local times, $ell_t$. We derive precise logarithmic asymptotics of the expectation of $exp{theta_t |ell_t|_p}$ for scales $theta_t>0$ that are bounded from above, possibly tending to zero. The speed is identified in terms of mixed powers of $t$ and $theta_t$, and the precise rate is characterized in terms of a variational formula, which is in close connection to the {it Gagliardo-Nirenberg inequality}. As a corollary, we obtain a large-deviation principle for $|ell_t|_p/(t r_t)$ for deviation functions $r_t$ satisfying $t r_tggE[|ell_t|_p]$. Informally, it turns out that the random walk homogeneously squeezes in a $t$-dependent box with diameter of order $ll t^{1/d}$ to produce the required amount of self-intersections. Our main tool is an upper bound for the joint density of the local times of the walk.
Given a sequence of lattice approximations $D_Nsubsetmathbb Z^2$ of a bounded continuum domain $Dsubsetmathbb R^2$ with the vertices outside $D_N$ fused together into one boundary vertex $varrho$, we consider discrete-time simple random walks in $D_Ncup{varrho}$ run for a time proportional to the expected cover time and describe the scaling limit of the exceptional level sets of the thick, thin, light and avoided points. We show that these are distributed, up a spatially-dependent log-normal factor, as the zero-average Liouville Quantum Gravity measures in $D$. The limit law of the local time configuration at, and nearby, the exceptional points is determined as well. The results extend earlier work by the first two authors who analyzed the continuous-time problem in the parametrization by the local time at $varrho$. A novel uniqueness result concerning divisible random measures and, in particular, Gaussian Multiplicative Chaos, is derived as part of the proofs.
We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the probability that the random walk travels slower than its typical speed and determine its decay rate asymptotic.
The aim of this paper is the study of the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results about the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasi transitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit non-strong local survival. Finally we show that the generating function of a irreducible BRW can have more than two fixed points; this disproves a previously known result.
313 - Leonardo T. Rolla 2015
Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا