Do you want to publish a course? Click here

Modulation Classification via Gibbs Sampling Based on a Latent Dirichlet Bayesian Network

162   0   0.0 ( 0 )
 Added by Yu Liu
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

A novel Bayesian modulation classification scheme is proposed for a single-antenna system over frequency-selective fading channels. The method is based on Gibbs sampling as applied to a latent Dirichlet Bayesian network (BN). The use of the proposed latent Dirichlet BN provides a systematic solution to the convergence problem encountered by the conventional Gibbs sampling approach for modulation classification. The method generalizes, and is shown to improve upon, the state of the art.



rate research

Read More

The problem of modulation classification for a multiple-antenna (MIMO) system employing orthogonal frequency division multiplexing (OFDM) is investigated under the assumption of unknown frequency-selective fading channels and signal-to-noise ratio (SNR). The classification problem is formulated as a Bayesian inference task, and solutions are proposed based on Gibbs sampling and mean field variational inference. The proposed methods rely on a selection of the prior distributions that adopts a latent Dirichlet model for the modulation type and on the Bayesian network formalism. The Gibbs sampling method converges to the optimal Bayesian solution and, using numerical results, its accuracy is seen to improve for small sample sizes when switching to the mean field variational inference technique after a number of iterations. The speed of convergence is shown to improve via annealing and random restarts. While most of the literature on modulation classification assume that the channels are flat fading, that the number of receive antennas is no less than that of transmit antennas, and that a large number of observed data symbols are available, the proposed methods perform well under more general conditions. Finally, the proposed Bayesian methods are demonstrated to improve over existing non-Bayesian approaches based on independent component analysis and on prior Bayesian methods based on the `superconstellation method.
Signal degradation is ubiquitous and computational restoration of degraded signal has been investigated for many years. Recently, it is reported that the capability of signal restoration is fundamentally limited by the perception-distortion tradeoff, i.e. the distortion and the perceptual difference between the restored signal and the ideal `original signal cannot be made both minimal simultaneously. Distortion corresponds to signal fidelity and perceptual difference corresponds to perceptual naturalness, both of which are important metrics in practice. Besides, there is another dimension worthy of consideration, namely the semantic quality or the utility for recognition purpose, of the restored signal. In this paper, we extend the previous perception-distortion tradeoff to the case of classification-distortion-perception (CDP) tradeoff, where we introduced the classification error rate of the restored signal in addition to distortion and perceptual difference. T
A novel rate splitting space division multiple access (SDMA) scheme based on grouped code index modulation (GrCIM) is proposed for the sixth generation (6G) downlink transmission. The proposed RSMA-GrCIM scheme transmits information to multiple user equipments (UEs) through the space division multiple access (SDMA) technique, and exploits code index modulation for rate splitting. Since the CIM scheme conveys information bits via the index of the selected Walsh code and binary phase shift keying (BPSK) signal, our RSMA scheme transmits the private messages of each user through the indices, and the common messages via the BPSK signal. Moreover, the Walsh code set is grouped into several orthogonal subsets to eliminate the interference from other users. A maximum likelihood (ML) detector is used to recovery the source bits, and a mathematical analysis is provided for the upper bound bit error ratio (BER) of each user. Comparisons are also made between our proposed scheme and the traditional SDMA scheme in spectrum utilization, number of available UEs, etc. Numerical results are given to verify the effectiveness of the proposed SDMA-GrCIM scheme.
100 - Harishchandra Dubey , Nandita , 2016
In this work, a pattern recognition system is investigated for blind automatic classification of digitally modulated communication signals. The proposed technique is able to discriminate the type of modulation scheme which is eventually used for demodulation followed by information extraction. The proposed system is composed of two subsystems namely feature extraction sub-system (FESS) and classifier sub-system (CSS). The FESS consists of continuous wavelet transform (CWT) for feature generation and principal component analysis (PCA) for selection of the feature subset which is rich in discriminatory information. The CSS uses the selected features to accurately classify the modulation class of the received signal. The proposed technique uses probabilistic neural network (PNN) and multilayer perceptron forward neural network (MLPFN) for comparative study of their recognition ability. PNN have been found to perform better in terms of classification accuracy as well as testing and training time than MLPFN. The proposed approach is robust to presence of phase offset and additive Gaussian noise.
We consider a Bayesian hierarchical version of the normal theory general linear model which is practically relevant in the sense that it is general enough to have many applications and it is not straightforward to sample directly from the corresponding posterior distribution. Thus we study a block Gibbs sampler that has the posterior as its invariant distribution. In particular, we establish that the Gibbs sampler converges at a geometric rate. This allows us to establish conditions for a central limit theorem for the ergodic averages used to estimate features of the posterior. Geometric ergodicity is also a key component for using batch means methods to consistently estimate the variance of the asymptotic normal distribution. Together, our results give practitioners the tools to be as confident in inferences based on the observations from the Gibbs sampler as they would be with inferences based on random samples from the posterior. Our theoretical results are illustrated with an application to data on the cost of health plans issued by health maintenance organizations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا