No Arabic abstract
The problem of modulation classification for a multiple-antenna (MIMO) system employing orthogonal frequency division multiplexing (OFDM) is investigated under the assumption of unknown frequency-selective fading channels and signal-to-noise ratio (SNR). The classification problem is formulated as a Bayesian inference task, and solutions are proposed based on Gibbs sampling and mean field variational inference. The proposed methods rely on a selection of the prior distributions that adopts a latent Dirichlet model for the modulation type and on the Bayesian network formalism. The Gibbs sampling method converges to the optimal Bayesian solution and, using numerical results, its accuracy is seen to improve for small sample sizes when switching to the mean field variational inference technique after a number of iterations. The speed of convergence is shown to improve via annealing and random restarts. While most of the literature on modulation classification assume that the channels are flat fading, that the number of receive antennas is no less than that of transmit antennas, and that a large number of observed data symbols are available, the proposed methods perform well under more general conditions. Finally, the proposed Bayesian methods are demonstrated to improve over existing non-Bayesian approaches based on independent component analysis and on prior Bayesian methods based on the `superconstellation method.
For massive MIMO AF relays, symbol detection becomes a practical issue when the number of antennas is not large enough, since linear methods are non-optimal and optimal methods are exponentially complex. This paper proposes a new detection algorithm that offers Bayesian-optimal MSE at the cost of $O(n^3)$ complexity per iteration. The algorithm is in essence a hybrid of two methods recently developed for deep learning, with particular optimization for relay. As a hybrid, it inherits from the two a state evolution formulism, where the asymptotic MSE can be precisely predicted through a scalar equivalent model. The algorithm also degenerates easily to many results well-known when single-hop considered.
Hybrid analog-digital precoding architectures and low-resolution analog-to-digital converter (ADC) receivers are two solutions to reduce hardware cost and power consumption for millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication systems with large antenna arrays. In this study, we consider a mmWave MIMO-OFDM receiver with a generalized hybrid architecture in which a small number of radio-frequency (RF) chains and low-resolution ADCs are employed simultaneously. Owing to the strong nonlinearity introduced by low-resolution ADCs, the task of data detection is challenging, particularly achieving a Bayesian optimal data detector. This study aims to fill this gap. By using generalized expectation consistent signal recovery technique, we propose a computationally efficient data detection algorithm that provides a minimum mean-square error estimate on data symbols and is extended to a mixed-ADC architecture. Considering particular structure of MIMO-OFDM channel matirx, we provide a lowcomplexity realization in which only FFT operation and matrixvector multiplications are required. Furthermore, we present an analytical framework to study the theoretical performance of the detector in the large-system limit, which can precisely evaluate the performance expressions such as mean-square error and symbol error rate. Based on this optimal detector, the potential of adding a few low-resolution RF chains and high-resolution ADCs for mixed-ADC architecture is investigated. Simulation results confirm the accuracy of our theoretical analysis and can be used for system design rapidly. The results reveal that adding a few low-resolution RF chains to original unquantized systems can obtain significant gains.
In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architecture aimed to reduce the power consumption at the user terminal, while attaining a significant throughput. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog-to-digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to-noise-ratio (SNR) regions showing that a simple threshold can be obtained at high SNR and its performance approaches the exact threshold. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap.
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communication from Base Stations (BSs), and when high carrier frequencies are used that are sensitive to attenuation losses. In the literature, the exploitation of RISs is exclusively based on traditional coherent demodulation, which necessitates the availability of Channel State Information (CSI). Given the CSI, a multi-antenna BS or a dedicated controller computes the pre/post spatial coders and the RIS configuration. The latter tasks require significant amount of time and resources, which may not be affordable when the channel is time-varying or the CSI is not accurate enough. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RIS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. Considering both an idealistic and a realistic channel model, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) and the Symbol Error Probability (SEP) of the proposed non-coherent RIS-empowered system are presented. Our extensive computer simulation results verify the accuracy of the presented analysis and showcase the proposed systems performance and superiority over coherent demodulation in different mobility and spatial correlation scenarios.
Physical layer security has been considered as an important security approach in wireless communications to protect legitimate transmission from passive eavesdroppers. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a transmit-filter-assisted secure MIMO-OFDM system which can destroy the orthogonality of eavesdroppers signals. Our proposed transmit filter can disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Then, we propose another artificial noise (AN)-assisted secure MIMO-OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to disturb the reception of eavesdropper while the legitimate transmission will not be affected. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO-OFDM system.