No Arabic abstract
A novel rate splitting space division multiple access (SDMA) scheme based on grouped code index modulation (GrCIM) is proposed for the sixth generation (6G) downlink transmission. The proposed RSMA-GrCIM scheme transmits information to multiple user equipments (UEs) through the space division multiple access (SDMA) technique, and exploits code index modulation for rate splitting. Since the CIM scheme conveys information bits via the index of the selected Walsh code and binary phase shift keying (BPSK) signal, our RSMA scheme transmits the private messages of each user through the indices, and the common messages via the BPSK signal. Moreover, the Walsh code set is grouped into several orthogonal subsets to eliminate the interference from other users. A maximum likelihood (ML) detector is used to recovery the source bits, and a mathematical analysis is provided for the upper bound bit error ratio (BER) of each user. Comparisons are also made between our proposed scheme and the traditional SDMA scheme in spectrum utilization, number of available UEs, etc. Numerical results are given to verify the effectiveness of the proposed SDMA-GrCIM scheme.
Rate-Splitting Multiple Access (RSMA) has recently appeared as a powerful and robust multiple access and interference management strategy for downlink Multi-user (MU) multi-antenna communications. In this work, we study the precoder design problem for RSMA scheme in downlink MU systems with both perfect and imperfect Channel State Information at the Transmitter (CSIT) and assess the role and benefits of transmitting multiple common streams. Unlike existing works which have considered single-antenna receivers (Multiple-Input Single-Output--MISO), we propose and extend the RSMA framework for multi-antenna receivers (Multiple-Input Multiple-Output--MIMO) and formulate the precoder optimization problem with the aim of maximizing the Weighted Ergodic Sum-Rate (WESR). Precoder optimization is solved using Sample Average Approximation (SAA) together with the proposed vectorization and Weighted Minimum Mean Square Error (WMMSE) based approach. Achievable sum-Degree of Freedom (DoF) of RSMA is derived for the proposed framework as an increasing function of the number of transmitted common and private streams, which is further validated by the Ergodic Sum Rate (ESR) performance using Monte Carlo simulations. Conventional MU-MIMO based on linear precoders and Non-Orthogonal Multiple Access (NOMA) schemes are considered as baselines. Numerical results show that with imperfect CSIT, the sum-DoF and ESR performance of RSMA is superior than that of the two baselines, and is increasing with the number of transmitted common streams. Moreover, by better managing the interference, RSMA not only has significant ESR gains over baseline schemes but is more robust to CSIT inaccuracies, network loads and user deployments.
We consider globally optimal precoder design for rate splitting multiple access in Gaussian multiple-input single-output downlink channels with respect to weighted sum rate and energy efficiency maximization. The proposed algorithm solves an instance of the joint multicast and unicast beamforming problem and includes multicast- and unicast-only beamforming as special cases. Numerical results show that it outperforms state-of-the-art algorithms in terms of numerical stability and converges almost twice as fast.
To cope with the explosive traffic growth of next-generation wireless communications, it is necessary to design next-generation multiple access techniques that can provide higher spectral efficiency as well as larger-scale connectivity. As a promising candidate, power-domain non-orthogonal multiple access (NOMA) has been widely studied. In conventional power-domain NOMA, multiple users are multiplexed in the same time and frequency band by different preset power levels, which, however, may limit the spectral efficiency under practical finite alphabet inputs. Inspired by the concept of spatial modulation, we propose to solve this problem by encoding extra information bits into the power levels, and exploit different signal constellations to help the receiver distinguish between them. To convey this idea, termed power selection (PS)-NOMA, clearly, we consider a simple downlink two-user NOMA system with finite input constellations. Assuming maximum-likelihood detection, we derive closed-form approximate bit error ratio (BER) expressions for both users. The achievable rates of both users are also derived in closed form. Simulation results verify the analysis and show that the proposed PS-NOMA outperforms conventional NOMA in terms of BER and achievable rate.
Rate-splitting multiple access (RSMA) is a promising technique for downlink multi-antenna communications owning to its capability of enhancing the system performance in a wide range of network loads, user deployments and channel state information at the transmitter (CSIT) inaccuracies. In this paper, we investigate the achievable rate performance of RSMA in a multi-user multiple-input single-output (MU-MISO) network where only slow-varying statistical channel state information (CSI) is available at the transmitter. RSMA-based statistical beamforming and the split of the common stream is optimized with the objective of maximizing the minimum user rate subject to a sum power budget of the transmitter. Two statistical CSIT scenarios are investigated, namely the Rayleigh fading channels with only spatial correlations known at the transmitter, and the uniform linear array (ULA) deployment with only channel amplitudes and mean of phase known at the transmitter. Numerical results demonstrate the explicit max min fairness (MMF) rate gain of RSMA over space division multiple access (SDMA) in both scenarios. Moreover, we demonstrate that RSMA is more robust to the inaccuracy of statistical CSIT.
Rate-Splitting Multiple Access (RSMA) is a flexible and robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. In this work, we study the performance of RSMA in the scenarios related with the important core services of New Radio (NR) and 6G, namely, enhanced Ultra-Reliable and Low-Latency (URLLC) and enhanced Mobile Broadband Communications (eMBB). We present the optimal system designs employing RSMA that target short-packet and low-latency communications as well as robust communications with high-throughput under the practical and important setup of imperfect Channel State Information at Transmitter (CSIT) originating from user mobility and feedback latency in the network. We demonstrate via numerical results that RSMA achieves significantly higher performance than Space Division Multiple Access (SDMA) and Non-Orthogonal Multiple Access (NOMA), and is capable of addressing the requirements for enhanced URLLC and eMBB in 6G efficiently.