Do you want to publish a course? Click here

GRAVITY: the Calibration Unit

170   0   0.0 ( 0 )
 Added by Nicolas Blind
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.



rate research

Read More

SOXS is a new spectrograph for the New Technology Telescope (NTT), optimized for transient and variable objects, covering a wide wavelength range from 350 to 2000 nm. SOXS is equipped with a calibration unit that will be used to remove the instrument signatures and to provide wavelength calibration to the data. The calibration unit will employ seven calibration lamps: a quartz-tungsten-halogen and a deuterium lamp for the flat-field correction, a ThAr lamp and four pencil-style rare-gas lamps for the wavelength calibration. The light from the calibration lamps is injected into the spectrograph mimicking the f/11 input beam of the NTT, by using an integrating sphere and a custom doublet. The oversized illumination patch covers the length of the spectrograph slit homogeneously, with $< 1%$ variation. The optics also supports the second mode of the unit, the star-simulator mode that emulates a point source by utilizing a pinhole mask. Switching between the direct illumination and pinhole modes is performed by a linear stage. A safety interlock switches off the main power when the lamp box cover is removed, preventing accidental UV exposure to the service personnel. All power supplies and control modules are located in an electronic rack at a distance from the telescope platform. In this presentation we describe the optical, mechanical, and electrical designs of the SOXS calibration unit, and report the status of development in which the unit is currently in the test and verification stage.
We present fore-optics and calibration unit design of Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS). DOTIFS fore-optics is designed to modify the focal ratio of the light and to match its plate scale to the physical size of Integral Field Units (IFUs). The fore-optics also delivers a telecentric beam to the IFUs on the telescope focal plane. There is a calibration unit part of which is combined with the fore-optics to have a light and compact system. We use Xenon-arc lamp as a continuum source and Krypton/Mercury-Neon lamps as wavelength calibration sources. Fore-optics and calibration unit shares two optical lenses to maintain compactness of the overall subsystem. Here we present optical and opto-mechanical design of the calibration unit and fore-optics as well as calibration scheme of DOTIFS.
The Gemini Planet Imager (GPI) entered on-sky commissioning phase, and had its First Light at the Gemini South telescope in November 2013. Meanwhile, the fast loops for atmospheric correction of the Extreme Adaptive Optics (XAO) system have been closed on many dozen stars at different magnitudes (I=4-8), elevation angles and a variety of seeing conditions, and a stable loop performance was achieved from the beginning. Ultimate contrast performance requires a very low residual wavefront error (design goal 60 nm RMS), and optimization of the planet finding instrument on different ends has just begun to deepen and widen its dark hole region. Laboratory raw contrast benchmarks are in the order of 10^-6 or smaller. In the telescope environment and in standard operations new challenges are faced (changing gravity, temperature, vibrations) that are tackled by a variety of techniques such as Kalman filtering, open-loop models to keep alignment to within 5 mas, speckle nulling, and a calibration unit (CAL). The CAL unit was especially designed by the Jet Propulsion Laboratory to control slowly varying wavefront errors at the focal plane of the apodized Lyot coronagraph by the means of two wavefront sensors: 1) a 7x7 low order Shack-Hartmann SH wavefront sensor (LOWFS), and 2) a special Mach-Zehnder interferometer for mid-order spatial frequencies (HOWFS) - atypical in that the beam is split in the focal plane via a pinhole but recombined in the pupil plane with a beamsplitter. The original design goal aimed for sensing and correcting on a level of a few nm which is extremely challenging in a telescope environment. This paper focuses on non-common path low order wavefront correction as achieved through the CAL unit on sky. We will present the obtained results as well as explain challenges that we are facing.
This paper describes the design and construction of the automatic calibration unit (ACU) for the JUNO experiment. The ACU is a fully automated mechanical system. It is capable of deploying multiple radioactive sources, an ultraviolet (UV) laser source, or an auxiliary sensor such as a temperature sensor, one at a time, into the central detector of JUNO along the central axis. It is designed as a primary tool to precisely calibrate the energy scale of detector, aligning timing for the photosensors, and partially monitoring the position-dependent energy scale variations.
We present the data reduction pipeline, MEAD, for Arizona Lenslets for Exoplanet Spectroscopy (ALES), the first thermal infrared integral field spectrograph designed for high-contrast imaging. ALES is an upgrade of LMIRCam, the $1-5,mu$m imaging camera for the Large Binocular Telescope, capable of observing astronomical objects in the thermal infrared ($3-5,mu$m) to produce simultaneous spatial and spectral data cubes. The pipeline is currently designed to perform $L$-band ($2.8-4.2,mu$m) data cube reconstruction, relying on methods used extensively by current near-infrared integral field spectrographs. ALES data cube reconstruction on each spectra uses an optimal extraction method. The calibration unit comprises a thermal infrared source, a monochromator and an optical diffuser designed to inject specific wavelengths of light into LBTI to evenly illuminate the pupil plane and ALES lenslet array with monochromatic light. Not only does the calibration unit facilitate wavelength calibration for ALES and LBTI, but it also provides images of monochromatic point spread functions (PSFs). A linear combination of these monochromatic PSFs can be optimized to fit each spectrum in the least-square sense via $chi^2$ fitting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا