Do you want to publish a course? Click here

Interferometric length metrology for the dimensional control of ultra-stable Ring Laser Gyroscopes

468   0   0.0 ( 0 )
 Added by Jacopo Belfi Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the experimental test of a method for controlling the absolute length of the diagonals of square ring laser gyroscopes. The purpose is to actively stabilize the ring cavity geometry and to enhance the rotation sensor stability in order to reach the requirements for the detection of the relativistic Lense-Thirring effect with a ground-based array of optical gyroscopes. The test apparatus consists of two optical cavities 1.32 m in length, reproducing the features of the ring cavity diagonal resonators of large frame He-Ne ring laser gyroscopes. The proposed measurement technique is based on the use of a single diode laser, injection locked to a frequency stabilized He-Ne/Iodine frequency standard, and a single electro-optic modulator. The laser is modulated with a combination of three frequencies allowing to lock the two cavities to the same resonance frequency and, at the same time, to determine the cavity Free Spectral Range (FSR). We obtain a stable lock of the two cavities to the same optical frequency reference, providing a length stabilization at the level of 1 part in $10^{11}$, and the determination of the two FSRs with a relative precision of 0.2 ppm. This is equivalent to an error of 500 nm on the absolute length difference between the two cavities.



rate research

Read More

A global network of optical atomic clocks will enable unprecedented measurement precision in fields including tests of fundamental physics, dark matter searches, geodesy, and navigation. Free-space laser links through the turbulent atmosphere are needed to fully exploit this global network, by enabling comparisons to airborne and spaceborne clocks. We demonstrate frequency transfer over a 2.4 km atmospheric link with turbulence similar to that of a ground-to-space link, achieving a fractional frequency stability of 6.1E-21 in 300 s of integration time. We also show that clock comparison between ground and low Earth orbit will be limited by the stability of the clocks themselves after only a few seconds of integration. This significantly advances the technologies needed to realize a global timescale network of optical atomic clocks.
He-Ne ring laser gyroscopes are, at present, the most precise devices for absolute angular velocity measurements. Limitations to their performance come from the non--linear dynamics of the laser. Following the Lamb semi-classical theory, we find a set of critical parameters affecting the time stability of the system. We propose a method for estimating the long term drift of the laser parameters and for filtering out the laser dynamics effects from the rotation measurement. The parameter estimation procedure, based on the perturbative solutions of the laser dynamics, allow us to apply Kalman Filter theory for the estimation of the angular velocity. Results of a comprehensive Monte Carlo simulation and results of a preliminary analysis on experimental data from the ring laser prototype G-Pisa are shown and discussed.
Since its invention in 1999, optical centrifuge has become a powerful tool for controlling molecular rotation and studying molecular dynamics and molecular properties at extreme levels of rotational excitation. The technique has been applied to a variety of molecular species, from simple linear molecules to symmetric and asymmetric tops, to molecular ions and chiral enantiomers. Properties of isolated ultrafast rotating molecules, so-called molecular superrotors, have been investigated, as well as their collisions with one another and interaction with external fields. The ability of an optical centrifuge to spin a particular molecule of interest depends on both the molecular structure and the parameters of the centrifuge laser pulse. An interplay between these two factors dictates the utility of an optical centrifuge in any specific application. Here, we discuss the strategy of assessing and adjusting the properties of the centrifuge to those of the molecular rotors, and describe two practical examples of optical centrifuges with very different characteristics, implemented experimentally in our laboratory.
222 - R. Santagata , A. Beghi , J. Belfi 2014
Ultra sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth: the project name is GINGER (Gyroscopes IN GEneral Relativity), a ground-based triaxial array of ring lasers aiming at measuring the Earth rotation rate with an accuracy of 10^-14 rad/s. Such ambitious goal is now within reach as large area ring lasers are very close to the necessary sensitivity and stability. However, demanding constraints on the geometrical stability of the laser optical path inside the ring cavity are required. Thus we have started a detailed study of the geometry of an optical cavity, in order to find a control strategy for its geometry which could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions which allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring.
Active ring laser gyroscopes (RLG) operating on the principle of the optical Sagnac effect are preferred instruments for a range of applications, such as inertial guidance systems, seismology, and geodesy, that require both high bias stability and high angular velocity resolutions. Operating at such accuracy levels demands special precautions like dithering or multi-mode operation to eliminate frequency lock-in or similar effects introduced due to synchronisation of counter-propagating channels. Recently proposed bidirectional ultrafast fibre lasers can circumvent the limitations of continuous wave RLGs. However, their performance is limited due to the nature of the highly-averaged interrogation of the Sagnac effect. In general, the performance of current optical gyroscopes relies on the available measurement methods used for extracting the signal. Here, by changing the paradigm of traditional measurement and applying spatio-temporal intensity processing, we demonstrate that the bidirectional ultrafast laser can be transformed to an ultrafast gyroscope with acquisition rates of the order of the laser repetition rate, making them at least two orders of magnitude faster than commercially deploy
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا