Do you want to publish a course? Click here

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

157   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $deltalangle r^{2}rangle^{A,221}$ values for $^{218m,219}text{Fr}$ and $^{229,231}text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}text{Fr}$ has a weakly inverted odd-even staggering while $^{228}text{Fr}$ has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The $g(^{219}text{Fr}) = +0.69(1)$ value supports a $pi 1h_{9/2}$ shell model configuration for the ground state. The $g(^{229,231}text{Fr})$ values support the tentative $I^{pi}(^{229,231}text{Fr}) = (1/2^{+})$ spin, and point to a $pi s_{1/2}^{-1}$ intruder ground state configuration.



rate research

Read More

Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionisation spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the $5f^67s^2 ^7F_0 rightarrow 5f^56d^27s (J=1)$ and $5f^67s^2 ^7F_1 rightarrow 5f^67s7p (J=2)$ atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei $^{239,241}$Pu. Collinear laser spectroscopy was performed on the $5f^67s ^8F_{1/2} rightarrow J=1/2; (27523.61text{cm}^{-1})$ ionic transition with the hyperfine $A$ factors measured for $^{239}$Pu. Changes in mean-squared charge radii have been extracted and show a good agreement with previous non-optical methods, with an uncertainty improvement by approximately one order of magnitude. Plutonium represents the heaviest element studied to date using collinear laser spectroscopy.
228 - Jenny Lee , M.B. Tsang , D. Bazin 2009
Spectroscopic factors have been extracted for proton rich 34Ar and neutron rich 46Ar using the (p,d) neutron transfer reaction. The experimental results show little reduction of the ground state neutron spectroscopic factor of the proton rich nucleus 34Ar compared to that of 46Ar. The results suggest that correlations, which generally reduce such spectroscopic factors, do not depend strongly on the neutron-proton asymmetry of the nucleus in this isotopic region as was reported in knockout reactions. The present results are consistent with results from systematic studies of transfer reactions but inconsistent with the trends observed in knockout reaction measurements.
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at $N=126$ and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level, and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-$A$ nuclei, facilitated by particle-vibration coupling for odd-$A$ nuclei.
This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes $^{202-206}$Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes $^{202-206}$Fr, in addition to the identification of the low-lying states of $^{202,204}$Fr performed at the CRIS experiment.
The deformation of Ne isotopes in the island-of-inversion region is determined by the double-folding model with the Melbourne $g$-matrix and the density calculated by the antisymmetrized molecular dynamics (AMD). The double-folding model reproduces, with no adjustable parameter, the measured reaction cross sections for the scattering of $^{28-32}$Ne from $^{12}$C at 240MeV/nucleon. The quadrupole deformation thus determined is around 0.4 in the island-of-inversion region and $^{31}$Ne is a halo nuclei with large deformation. We propose the Woods-Saxon model with a suitably chosen parameterization set and the deformation given by the AMD calculation as a convenient way of simulating the density calculated directly by the AMD. The deformed Woods-Saxon model provides the density with the proper asymptotic form. The pairing effect is investigated, and the importance of the angular momentum projection for obtaining the large deformation in the island-of-inversion region is pointed out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا