Do you want to publish a course? Click here

Neutron-proton asymmetry dependence of spectroscopic factors in Ar isotopes

229   0   0.0 ( 0 )
 Added by Jenny Lee
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Spectroscopic factors have been extracted for proton rich 34Ar and neutron rich 46Ar using the (p,d) neutron transfer reaction. The experimental results show little reduction of the ground state neutron spectroscopic factor of the proton rich nucleus 34Ar compared to that of 46Ar. The results suggest that correlations, which generally reduce such spectroscopic factors, do not depend strongly on the neutron-proton asymmetry of the nucleus in this isotopic region as was reported in knockout reactions. The present results are consistent with results from systematic studies of transfer reactions but inconsistent with the trends observed in knockout reaction measurements.



rate research

Read More

Recent measurements of pre-equilibrium neutron and proton transverse emission from (112,124)Sn+(112,124)Sn reactions at 50 MeV/A have been completed at the National Superconducting Cyclotron Laboratory. Free nucleon transverse emission ratios are compared to those of A=3 mirror nuclei. Comparisons are made to BUU transport calculations and conclusions concerning the density dependence of the asymmetry term of the nuclear equation-of-state at sub-nuclear densities are made. The double-ratio of neutron-proton ratios between two reactions is employed as a means of reducing first-order Coulomb effects and detector efficiency effects. Comparison to BUU model predictions indicate a density dependence of the asymmetry energy that is closer to a form in which the asymmety energy increases as the square root of the density for the density region studied. A coalescent-invariant analysis is introduced as a means of reducing suggested difficulties with cluster emission in total nucleon emission. Future experimentation is presented.
179 - M.B. Tsang , Jenny Lee , S.C. Su 2009
We have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d,p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest USDB or USDA interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of two using either the GXPF1A or the XT interaction.
Spectroscopic information has been extracted on the hole-states of $^{55}$Ni, the least known of the quartet of nuclei ($^{55}$Ni, $^{57}$Ni, $^{55}$Co and $^{57}$Co), one neutron away from $^{56}$Ni, the N=Z=28 double magic nucleus. Using the $^{1}$H($^{56}$Ni,d)$^{55}$Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f$_{7/2}$, p$_{3/2}$ and the s$_{1/2}$ hole-states of $^{55}$Ni. This new data provides a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. State of the art calculations have been performed to describe the excitation energies and spectroscopic factors of the s$_{1/2}$ hole-state below Fermi energy.
Cross sections and analyzing powers for proton elastic scattering from $^{116,118,120,122,124}$Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm$^{-1}$ to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.
292 - T. Li , U. Garg , Y. Liu 2007
The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV $alpha$ particles in the angular range $0^circ$--$8.5^circ$. We find that the experimentally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in $^{208}$Pb and $^{90}$Zr very well. From the GMR data, a value of $K_{tau} = -550 pm 100$ MeV is obtained for the asymmetry-term in the nuclear incompressibility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا