No Arabic abstract
A new model is proposed to a collapsing star consisting of an initial inhomogeneous energy density and anisotropic pressure fluid with shear, radial heat flow and outgoing radiation. In previous papers one of us has always assumed an initial star with homogeneous energy density. The aim of this work is to generalize the previous models by introducing an initial inhomogeneous energy density and compare it to the initial homogeneous energy density collapse model. We will show the differences between these models in the evolution of all physical quantities that characterizes the gravitational collapse. The behavior of the energy density, pressure, mass, luminosity and the effective adiabatic index is analyzed. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the shear the pressure becomes more and more anisotropic. The black hole is never formed because the apparent horizon formation condition is never satisfied, in contrast of the previous model where a black hole is formed. An observer at infinity sees a radial point source radiating exponentially until reaches the time of maximum luminosity and suddenly the star turns off. In contrast of the former model where the luminosity also increases exponentially, reaching a maximum and after it decreases until the formation of the black hole. The effective adiabatic index is always positive without any discontinuity in contrast of the former model where there is a discontinuity around the time of maximum luminosity. The collapse is about three thousand times slower than in the case where the energy density is initially homogeneous.
Interested in the collapse of a radiating star, we study the temporal evolution of a fluid with heat flux and bulk viscosity, including anisotropic pressure. As a starting point, we adopt an initial configuration that satisfies the regularities conditions as well as the energy conditions to a certain range of the mass-radius ratio for the star, defining acceptable models. For this set of models, we verify that the energy conditions remain satisfied until the black hole formation. Astrophysical relevant quantities, such as the luminosity perceived by an observer at infinity, the time of event horizon formation and the loss of mass during the collapse are presented.
The present paper deals with the gravitational collapse of an inhomogeneous spherical star consisting of dust fluid in the background of dark energy components with linear equation of state. We discussed the development of apparent horizon to investigate the black-hole formation in gravitational collapsing process. The collapsing process is examined first separately for dust cloud and dark energy and then under the combined effect of dust interacting with dark energy. It is obtained that when only dust cloud or dark energy is present the collapse leads to the formation of black-hole under certain conditions. When both of them are present, collapsing star does not form black-hole. However when dark energy is considered as cosmological constant, the collapse leads to black hole formation.
In this paper, we considered the gravitational collapse of a symmetric radiating star consisting of perfect fluid (baryonic) in the background of dark energy (DE) with general equation of state. The effect of DE on the singularity formation has been discussed first separately (only DE present) and then combination of both baryonic and DE interaction. We have also showed that DE components play important role in the formation of Black-Hole(BH). In some cases the collapse of radiating star leads to black hole formation and in other cases it forms Naked-Singularity(or, eternally collapse). The present work is in itself remarkable to describe the effect of dark energy on singularity formation in radiating star.
We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole for a few simple, analytic cases. We construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmological and black hole event horizons which may be present.
We study the evolution of an anisotropic shear-free fluid with heat flux and kinematic self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming that the part of the tangential pressure which is explicitly time dependent of the fluid is zero and that the fluid moves along time-like geodesics. The energy conditions, geometrical and physical properties of the solutions are studied. The energy conditions are all satisfied at the beginning of the collapse but when the system approaches the singularity the energy conditions are violated, allowing for the appearance of an attractive phantom energy. We have found that, depending on the self-similar parameter $alpha$ and the geometrical radius, they may represent a naked singularity. We speculate that the apparent horizon disappears due to the emergence of exotic energy at the end of the collapse, or due to the characteristics of null acceleration systems as shown by recent work.