Do you want to publish a course? Click here

Singularity formation in radiating star with dark energy background

411   0   0.0 ( 0 )
 Added by Rajesh Kumar
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we considered the gravitational collapse of a symmetric radiating star consisting of perfect fluid (baryonic) in the background of dark energy (DE) with general equation of state. The effect of DE on the singularity formation has been discussed first separately (only DE present) and then combination of both baryonic and DE interaction. We have also showed that DE components play important role in the formation of Black-Hole(BH). In some cases the collapse of radiating star leads to black hole formation and in other cases it forms Naked-Singularity(or, eternally collapse). The present work is in itself remarkable to describe the effect of dark energy on singularity formation in radiating star.

rate research

Read More

We consider a gravastar model made of anisotropic dark energy with an infinitely thin spherical shell of a perfect fluid with the equation of state $p = (1-gamma)sigma$ with an external de Sitter-Schwarzschild region. It is found that in some cases the models represent the bounded excursion stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes or naked singularities. An interesting result is that we can have black hole and stable gravastar formation even with an interior and a shell constituted of dark and repulsive dark energy, as also shown in previous work. Besides, in three cases we have a dynamical evolution to a black hole (for $Lambda=0$) or to a naked singularity (for $Lambda > 0$). This is the first time in the literature that a naked singularity emerges from a gravastar model.
We consider a gravastar model made of anisotropic dark energy with an infinitely thin spherical shell of a perfect fluid with the equation of state $p = (1-gamma)sigma$ with an external de Sitter-Schwarzschild region. It is found that in some cases the models represent the bounded excursion stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes or naked singularities. An interesting result is that we can have black hole and stable gravastar formation even with an interior and a shell cons tituted of dark and repulsive dark energy, as also shown in previous work. Besides, in one case we have a dynamical evolution to a black hole (for $Lambda =0$) or to a naked singularity (for $Lambda > 0$). This is the first time in the literature that a naked singularity emerges from a gravastar model.
80 - G. Pinheiro , R. Chan 2014
A new model is proposed to a collapsing star consisting of an initial inhomogeneous energy density and anisotropic pressure fluid with shear, radial heat flow and outgoing radiation. In previous papers one of us has always assumed an initial star with homogeneous energy density. The aim of this work is to generalize the previous models by introducing an initial inhomogeneous energy density and compare it to the initial homogeneous energy density collapse model. We will show the differences between these models in the evolution of all physical quantities that characterizes the gravitational collapse. The behavior of the energy density, pressure, mass, luminosity and the effective adiabatic index is analyzed. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the shear the pressure becomes more and more anisotropic. The black hole is never formed because the apparent horizon formation condition is never satisfied, in contrast of the previous model where a black hole is formed. An observer at infinity sees a radial point source radiating exponentially until reaches the time of maximum luminosity and suddenly the star turns off. In contrast of the former model where the luminosity also increases exponentially, reaching a maximum and after it decreases until the formation of the black hole. The effective adiabatic index is always positive without any discontinuity in contrast of the former model where there is a discontinuity around the time of maximum luminosity. The collapse is about three thousand times slower than in the case where the energy density is initially homogeneous.
Within the framework of DBI non-canonical scalar field model of dark energy, we study the growth of dark matter perturbations in the both linear and non-linear regimes. In our DBI model, we consider the anti-de Sitter warp factor $f(phi)=f_0, phi^{-4}$ with constant $f_0>0$ and assume the DBI dark energy to be clustered and its sound speed $c_s$ to be constant. For a spatially flat FRW universe filled with pressureless dark matter and DBI dark energy, we first obtain the evolutionary behaviors of the background quantities. Our results show that in our DBI model, the universe starts from a matter dominated epoch and approaches to the de Sitter universe at late times, as expected. Also the DBI potential behaves like the power law one $V(phi)propto phi^n$. In addition, we use the Pseudo-Newtonian formalism to obtain the growth factor of dark matter perturbations in the linear regime. We conclude that for smaller $c_s$ (or $f_0$), the growth factor of dark matter is smaller for clustering DBI model compared to the homogeneous one. In the following, in the non-linear regime based on the spherical collapse model, we obtain the linear overdensity $delta_c(z_c)$, the virial overdensity $Delta_{rm vir}(z_c)$, overdensity at the turn around $zeta(z_c)$ and the rate of expansion of collapsed region $h_{rm ta}(z)$. We point out that for the smaller $c_s$ (or $tilde{f}_0$), the values of $delta_c(z_c)$, $Delta_{rm vir}(z_c)$, $zeta(z_c)$ and $h_{rm ta}(z)$ in non-clustering DBI models deviate more than the $Lambda$CDM compared to the clustering DBI. Finally, with the help of spherical collapse parameters we calculated the relative number density of halo objects above a given mass and conclude that the differences between clustering and homogeneous DBI models are more pronounced for higher-mass halos at high redshift.
We obtain finite-time existence for the massless Boltzmann equation, with a range of soft cross-sections, in an FLRW background with data given at the initial singularity. In the case of positive cosmological constant we obtain long-time existence in proper-time for small data as a corollary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا