The present paper deals with the gravitational collapse of an inhomogeneous spherical star consisting of dust fluid in the background of dark energy components with linear equation of state. We discussed the development of apparent horizon to investigate the black-hole formation in gravitational collapsing process. The collapsing process is examined first separately for dust cloud and dark energy and then under the combined effect of dust interacting with dark energy. It is obtained that when only dust cloud or dark energy is present the collapse leads to the formation of black-hole under certain conditions. When both of them are present, collapsing star does not form black-hole. However when dark energy is considered as cosmological constant, the collapse leads to black hole formation.
We investigate a class of cylindrically symmetric inhomogeneous $Lambda$-dust spacetimes which have a regular axis and some zero expansion component. For $Lambda e 0$, we obtain new exact solutions to the Einstein equations and show that they are unique, within that class. For $Lambda=0$, we recover the Senovilla-Vera metric and show that it can be locally matched to an Einstein-Rosen type of exterior. Finally, we explore some consequences of the matching, such as trapped surface formation and gravitational radiation in the exterior.
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
The present work investigates the gravitational collapse of a perfect fluid in $f(R)$ gravity models. For a general $f(R)$ theory, it is shown analytically that a collapse is quite possible. The singularity formed as a result of the collapse is found to be a curvature singularity of shell focusing type. The possibility of the formation of an apparent horizon hiding the central singularity depends on the initial conditions.
Recently a {it local} true (completely gauge fixed) Hamiltonian for spherically symmetric collapse was derived in terms of Ashtekar variables. We show that such a local Hamiltonian follows directly from the geometrodynamics of gravity theories that obey a Birkhoff theorem and possess a mass function that is constant on the constraint surface in vacuum. In addition to clarifying the geometrical content, our approach has the advantage that it can be directly applied to a large class of spherically symmetric and 2D gravity theories, including $p$-th order Lovelock gravity in D dimensions. The resulting expression for the true local Hamiltonian is universal and remarkably simple in form.
A new model is proposed to a collapsing star consisting of an initial inhomogeneous energy density and anisotropic pressure fluid with shear, radial heat flow and outgoing radiation. In previous papers one of us has always assumed an initial star with homogeneous energy density. The aim of this work is to generalize the previous models by introducing an initial inhomogeneous energy density and compare it to the initial homogeneous energy density collapse model. We will show the differences between these models in the evolution of all physical quantities that characterizes the gravitational collapse. The behavior of the energy density, pressure, mass, luminosity and the effective adiabatic index is analyzed. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the shear the pressure becomes more and more anisotropic. The black hole is never formed because the apparent horizon formation condition is never satisfied, in contrast of the previous model where a black hole is formed. An observer at infinity sees a radial point source radiating exponentially until reaches the time of maximum luminosity and suddenly the star turns off. In contrast of the former model where the luminosity also increases exponentially, reaching a maximum and after it decreases until the formation of the black hole. The effective adiabatic index is always positive without any discontinuity in contrast of the former model where there is a discontinuity around the time of maximum luminosity. The collapse is about three thousand times slower than in the case where the energy density is initially homogeneous.