Do you want to publish a course? Click here

Gravitational Collapse with a Cosmological Constant

86   0   0.0 ( 0 )
 Added by Draza
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole for a few simple, analytic cases. We construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmological and black hole event horizons which may be present.



rate research

Read More

In the functional Schrodinger formalism, we obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer, by mapping the resulting variable mass Schrodinger equation to that of the quantum isotonic oscillator. Using this wave function, we perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential. We construct a bouncing geometry via a disformal transformation, incorporating quantum effects. We derive the external solution that matches with this smoothly, and is also quantum corrected. Due to a pressure term originating from the quantum potential, an initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius, and thereby avoids the classical singularity predicted by general relativity.
60 - F.Rahaman , M.Kalam , M.Sarker 2006
It has been suggested that the cosmological constant is a variable dynamical quantity. A class of solution has been presented for the spherically symmetric space time describing wormholes by assuming the erstwhile cosmological constant $Lambda$ to be a space variable scalar, viz., $Lambda$ = $Lambda (r) $ . It is shown that the Averaged Null Energy Condition (ANEC) violating exotic matter can be made arbitrarily small.
152 - Paul Tod 2007
We prove well-posedness of the initial value problem for the Einstein equations for spatially-homogeneous cosmologies with data at an isotropic cosmological singularity, for which the matter content is either a cosmological constant with collisionless particles of a single mass (possibly zero) or a cosmological constant with a perfect fluid having the radiation equation of state. In both cases, with a positive cosmological constant, these solutions, except possibly for Bianchi-type-IX, will expand forever, and be geodesically-complete into the future.
130 - Hemza Azri , A. Bounames 2014
We derive a model of dark energy which evolves with time via the scale factor. The equation of state $omega=(1-2alpha)/(1+2alpha)$ is studied as a function of a parameter $alpha$ introduced in this model. In addition to the recent accelerated expansion, the model predicts another decelerated phase. The age of the universe is found to be almost consistent with observation. In the limiting case, the cosmological constant model, we find that vacuum energy gravitates with a gravitational strength, different than Newtons constant. This enables degravitation of the vacuum energy which in turn produces the tiny observed curvature, rather than a 120 orders of magnitude larger value.
A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which introduces a cosmological horizon. The cosmological constant does not change the local conditions on the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons. Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalar-tensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on a de Sitter background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا