Do you want to publish a course? Click here

Nonlinear Atom-Photon Interaction Induced Population Inversion and Inverted Quantum Phase Transition of Bose-Einstein Condensate in an Optical Cavity

157   0   0.0 ( 0 )
 Added by Jiuqing Liang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we explore the rich structure of macroscopic many-particle quantum states for Bose- Einstein condensate in an optical cavity with the tunable nonlinear atom-photon interaction [Nature (London) 464, 1301 (2010)]. Population inversion, bistable normal phases and the coexistence of normal{superradiant phases are revealed by adjusting of the experimentally realizable interaction strength and pump-laser frequency. For the negative (effective) cavity-frequency we observe remark- ably an inverted quantum phase transition (QPT) from the superradiant to normal phases with the increase of atom-field coupling, which is just opposite to the QPT in the normal Dicke model. The bistable macroscopic states are derived analytically in terms of the spin-coherent-state variational method by taking into account of both normal and inverted pseudospin states.



rate research

Read More

357 - Xiuqin Zhao , Ni Liu , 2017
In this paper we investigate the ground-state properties and related quantum phase transitions for the two-component Bose-Einstein condensate in a single-mode optical cavity. Apart from the usual normal and superradiant phases multi-stable macroscopic quantum states are realized by means of the spin-coherent-state variational method. We demonstrate analytically the stimulated radiation from collective state of atomic population inversion, which does not exist in the normal Dicke model with single-component atoms. It is also revealed that the stimulated radiation can be generated only from one component of atoms and the other remains in the ordinary superradiant state. However the order of superradiant and stimulatedradiation states is interchangeable between two components of atoms by tuning the relative atom-field couplings and the frequency detuning as well.
94 - Zhen Li , Le-Man Kuang 2019
We propose a scheme to control quantum coherence of a two-component Bose-Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time evolution of quantum coherence of the two-component BEC. It is indicated that the single impurity atom can induce collapse and revival phenomenon of quantum coherence of the two-component BEC. Collapse-revival configurations of quantum coherence can be manipulated by the initial-state parameters of the impurity atom and the impurity-BEC interaction strengths.
The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrodinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.
We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce swallowtail looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates that provide direct evidence for multivalued, looped band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean field description.
We present a novel cavity QED system in which a Bose-Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations. The atoms are confined either within an intracavity far-off-resonance optical dipole trap (FORT) or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا