Do you want to publish a course? Click here

Collective atomic-population-inversion and stimulated radiation for two-componentBose-Einstein condensate in an optical cavity

358   0   0.0 ( 0 )
 Added by Jiuqing Liang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the ground-state properties and related quantum phase transitions for the two-component Bose-Einstein condensate in a single-mode optical cavity. Apart from the usual normal and superradiant phases multi-stable macroscopic quantum states are realized by means of the spin-coherent-state variational method. We demonstrate analytically the stimulated radiation from collective state of atomic population inversion, which does not exist in the normal Dicke model with single-component atoms. It is also revealed that the stimulated radiation can be generated only from one component of atoms and the other remains in the ordinary superradiant state. However the order of superradiant and stimulatedradiation states is interchangeable between two components of atoms by tuning the relative atom-field couplings and the frequency detuning as well.



rate research

Read More

144 - Xiuqin Zhao , Ni Liu , 2014
In this paper we explore the rich structure of macroscopic many-particle quantum states for Bose- Einstein condensate in an optical cavity with the tunable nonlinear atom-photon interaction [Nature (London) 464, 1301 (2010)]. Population inversion, bistable normal phases and the coexistence of normal{superradiant phases are revealed by adjusting of the experimentally realizable interaction strength and pump-laser frequency. For the negative (effective) cavity-frequency we observe remark- ably an inverted quantum phase transition (QPT) from the superradiant to normal phases with the increase of atom-field coupling, which is just opposite to the QPT in the normal Dicke model. The bistable macroscopic states are derived analytically in terms of the spin-coherent-state variational method by taking into account of both normal and inverted pseudospin states.
We present a novel cavity QED system in which a Bose-Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations. The atoms are confined either within an intracavity far-off-resonance optical dipole trap (FORT) or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014)]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.
The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrodinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.
We observe vacuum Rabi splitting in a lossy nearly confocal cavity indicating the strong coupling regime, despite a weak single-atom single-mode coupling. Strong collective interaction manifests itself in the typical $sqrt{N}$-dependence of the normal mode splitting on the number of atoms $N$. The $TEM_{00}$-mode coupling parameters are $(g,kappa,gamma)=2pitimes(0.12,0.8,2.6)$ MHz and up to $(1.33pm 0.08)times10^5$ cesium atoms were loaded into the mode volume.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا