No Arabic abstract
We present a novel cavity QED system in which a Bose-Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations. The atoms are confined either within an intracavity far-off-resonance optical dipole trap (FORT) or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
We study the metastability and decay of multiply-charged superflow in a ring-shaped atomic Bose-Einstein condensate. Supercurrent corresponding to a giant vortex with topological charge up to q=10 is phase-imprinted optically and detected both interferometrically and kinematically. We observe q=3 superflow persisting for up to a minute and clearly resolve a cascade of quantised steps in its decay. These stochastic decay events, associated with vortex-induced $2 pi$ phase slips, correspond to collective jumps of atoms between discrete q values. We demonstrate the ability to detect quantised rotational states with > 99 % fidelity, which allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also observe rare stochastic phase slips for superflow speeds below the critical velocity.
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.
The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrodinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.