Do you want to publish a course? Click here

Promoting cold-start items in recommender systems

171   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

As one of major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, so-called the item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. To our surprise, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely these new items will have more chance to appear in other users recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.



rate research

Read More

Recommendation for new users, also called user cold start, has been a well-recognized challenge for online recommender systems. Most existing methods view the crux as the lack of initial data. However, in this paper, we argue that there are neglected problems: 1) New users behaviour follows much different distributions from regular users. 2) Although personalized features are involved, heavily imbalanced samples prevent the model from balancing new/regular user distributions, as if the personalized features are overwhelmed. We name the problem as the submergence of personalization. To tackle this problem, we propose a novel module: Personalized COld Start MOdules (POSO). Considering from a model architecture perspective, POSO personalizes existing modules by introducing multiple user-group-specialized sub-modules. Then, it fuses their outputs by personalized gates, resulting in comprehensive representations. In such way, POSO projects imbalanced features to even modules. POSO can be flexibly integrated into many existing modules and effectively improves their performance with negligible computational overheads. The proposed method shows remarkable advantage in industrial scenario. It has been deployed on the large-scale recommender system of Kwai, and improves new user Watch Time by a large margin (+7.75%). Moreover, POSO can be further generalized to regular users, inactive users and returning users (+2%-3% on Watch Time), as well as item cold start (+3.8% on Watch Time). Its effectiveness has also been verified on public dataset (MovieLens 20M). We believe such practical experience can be well generalized to other scenarios.
Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy.
User behavior has been validated to be effective in revealing personalized preferences for commercial recommendations. However, few user-item interactions can be collected for new users, which results in a null space for their interests, i.e., the cold-start dilemma. In this paper, a two-tower framework, namely, the model-agnostic interest learning (MAIL) framework, is proposed to address the cold-start recommendation (CSR) problem for recommender systems. In MAIL, one unique tower is constructed to tackle the CSR from a zero-shot view, and the other tower focuses on the general ranking task. Specifically, the zero-shot tower first performs cross-modal reconstruction with dual auto-encoders to obtain virtual behavior data from highly aligned hidden features for new users; and the ranking tower can then output recommendations for users based on the completed data by the zero-shot tower. Practically, the ranking tower in MAIL is model-agnostic and can be implemented with any embedding-based deep models. Based on the co-training of the two towers, the MAIL presents an end-to-end method for recommender systems that shows an incremental performance improvement. The proposed method has been successfully deployed on the live recommendation system of NetEase Cloud Music to achieve a click-through rate improvement of 13% to 15% for millions of users. Offline experiments on real-world datasets also show its superior performance in CSR. Our code is available.
Personalized recommendation benefits users in accessing contents of interests effectively. Current research on recommender systems mostly focuses on matching users with proper items based on user interests. However, significant efforts are missing to understand how the recommendations influence user preferences and behaviors, e.g., if and how recommendations result in textit{echo chambers}. Extensive efforts have been made in examining the phenomenon in online media and social network systems. Meanwhile, there are growing concerns that recommender systems might lead to the self-reinforcing of users interests due to narrowed exposure of items, which may be the potential cause of echo chamber. In this paper, we aim to analyze the echo chamber phenomenon in Alibaba Taobao -- one of the largest e-commerce platforms in the world. Echo chamber means the effect of user interests being reinforced through repeated exposure to similar contents. Based on the definition, we examine the presence of echo chamber in two steps. First, we explore whether user interests have been reinforced. Second, we check whether the reinforcement results from the exposure of similar contents. Our evaluations are enhanced with robust metrics, including cluster validity and statistical significance. Experiments are performed on extensive collections of real-world data consisting of user clicks, purchases, and browse logs from Alibaba Taobao. Evidence suggests the tendency of echo chamber in user click behaviors, while it is relatively mitigated in user purchase behaviors. Insights from the results guide the refinement of recommendation algorithms in real-world e-commerce systems.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا