No Arabic abstract
Personalized recommendation benefits users in accessing contents of interests effectively. Current research on recommender systems mostly focuses on matching users with proper items based on user interests. However, significant efforts are missing to understand how the recommendations influence user preferences and behaviors, e.g., if and how recommendations result in textit{echo chambers}. Extensive efforts have been made in examining the phenomenon in online media and social network systems. Meanwhile, there are growing concerns that recommender systems might lead to the self-reinforcing of users interests due to narrowed exposure of items, which may be the potential cause of echo chamber. In this paper, we aim to analyze the echo chamber phenomenon in Alibaba Taobao -- one of the largest e-commerce platforms in the world. Echo chamber means the effect of user interests being reinforced through repeated exposure to similar contents. Based on the definition, we examine the presence of echo chamber in two steps. First, we explore whether user interests have been reinforced. Second, we check whether the reinforcement results from the exposure of similar contents. Our evaluations are enhanced with robust metrics, including cluster validity and statistical significance. Experiments are performed on extensive collections of real-world data consisting of user clicks, purchases, and browse logs from Alibaba Taobao. Evidence suggests the tendency of echo chamber in user click behaviors, while it is relatively mitigated in user purchase behaviors. Insights from the results guide the refinement of recommendation algorithms in real-world e-commerce systems.
General-purpose representation learning through large-scale pre-training has shown promising results in the various machine learning fields. For an e-commerce domain, the objective of general-purpose, i.e., one for all, representations would be efficient applications for extensive downstream tasks such as user profiling, targeting, and recommendation tasks. In this paper, we systematically compare the generalizability of two learning strategies, i.e., transfer learning through the proposed model, ShopperBERT, vs. learning from scratch. ShopperBERT learns nine pretext tasks with 79.2M parameters from 0.8B user behaviors collected over two years to produce user embeddings. As a result, the MLPs that employ our embedding method outperform more complex models trained from scratch for five out of six tasks. Specifically, the pre-trained embeddings have superiority over the task-specific supervised features and the strong baselines, which learn the auxiliary dataset for the cold-start problem. We also show the computational efficiency and embedding visualization of the pre-trained features.
As one of major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, so-called the item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. To our surprise, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely these new items will have more chance to appear in other users recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
Modern E-commerce websites contain heterogeneous sources of information, such as numerical ratings, textual reviews and images. These information can be utilized to assist recommendation. Through textual reviews, a user explicitly express her affinity towards the item. Previous researchers found that by using the information extracted from these reviews, we can better profile the users explicit preferences as well as the item features, leading to the improvement of recommendation performance. However, most of the previous algorithms were only utilizing the review information for explicit-feedback problem i.e. rating prediction, and when it comes to implicit-feedback ranking problem such as top-N recommendation, the usage of review information has not been fully explored. Seeing this gap, in this work, we investigate the effectiveness of textual review information for top-N recommendation under E-commerce settings. We adapt several SOTA review-based rating prediction models for top-N recommendation tasks and compare them to existing top-N recommendation models from both performance and efficiency. We find that models utilizing only review information can not achieve better performances than vanilla implicit-feedback matrix factorization method. When utilizing review information as a regularizer or auxiliary information, the performance of implicit-feedback matrix factorization method can be further improved. However, the optimal model structure to utilize textual reviews for E-commerce top-N recommendation is yet to be determined.
Users of industrial recommender systems are normally suggesteda list of items at one time. Ideally, such list-wise recommendationshould provide diverse and relevant options to the users. However, in practice, list-wise recommendation is implemented as top-N recommendation. Top-N recommendation selects the first N items from candidates to display. The list is generated by a ranking function, which is learned from labeled data to optimize accuracy.However, top-N recommendation may lead to suboptimal, as it focuses on accuracy of each individual item independently and overlooks mutual influence between items. Therefore, we propose a personalized re-ranking model for improving diversity of the recommendation list in real recommender systems. The proposed re-ranking model can be easily deployed as a follow-up component after any existing ranking function. The re-ranking model improves the diversity by employing personalized Determinental Point Process (DPP). DPP has been applied in some recommender systems to improve the diversity and increase the user engagement.However, DPP does not take into account the fact that users may have individual propensities to the diversity. To overcome such limitation, our re-ranking model proposes a personalized DPP to model the trade-off between accuracy and diversity for each individual user. We implement and deploy the personalized DPP model on alarge scale industrial recommender system. Experimental results on both offline and online demonstrate the efficiency of our proposed re-ranking model.