No Arabic abstract
User behavior has been validated to be effective in revealing personalized preferences for commercial recommendations. However, few user-item interactions can be collected for new users, which results in a null space for their interests, i.e., the cold-start dilemma. In this paper, a two-tower framework, namely, the model-agnostic interest learning (MAIL) framework, is proposed to address the cold-start recommendation (CSR) problem for recommender systems. In MAIL, one unique tower is constructed to tackle the CSR from a zero-shot view, and the other tower focuses on the general ranking task. Specifically, the zero-shot tower first performs cross-modal reconstruction with dual auto-encoders to obtain virtual behavior data from highly aligned hidden features for new users; and the ranking tower can then output recommendations for users based on the completed data by the zero-shot tower. Practically, the ranking tower in MAIL is model-agnostic and can be implemented with any embedding-based deep models. Based on the co-training of the two towers, the MAIL presents an end-to-end method for recommender systems that shows an incremental performance improvement. The proposed method has been successfully deployed on the live recommendation system of NetEase Cloud Music to achieve a click-through rate improvement of 13% to 15% for millions of users. Offline experiments on real-world datasets also show its superior performance in CSR. Our code is available.
As one of major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, so-called the item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. To our surprise, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely these new items will have more chance to appear in other users recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.
Recommendation for new users, also called user cold start, has been a well-recognized challenge for online recommender systems. Most existing methods view the crux as the lack of initial data. However, in this paper, we argue that there are neglected problems: 1) New users behaviour follows much different distributions from regular users. 2) Although personalized features are involved, heavily imbalanced samples prevent the model from balancing new/regular user distributions, as if the personalized features are overwhelmed. We name the problem as the submergence of personalization. To tackle this problem, we propose a novel module: Personalized COld Start MOdules (POSO). Considering from a model architecture perspective, POSO personalizes existing modules by introducing multiple user-group-specialized sub-modules. Then, it fuses their outputs by personalized gates, resulting in comprehensive representations. In such way, POSO projects imbalanced features to even modules. POSO can be flexibly integrated into many existing modules and effectively improves their performance with negligible computational overheads. The proposed method shows remarkable advantage in industrial scenario. It has been deployed on the large-scale recommender system of Kwai, and improves new user Watch Time by a large margin (+7.75%). Moreover, POSO can be further generalized to regular users, inactive users and returning users (+2%-3% on Watch Time), as well as item cold start (+3.8% on Watch Time). Its effectiveness has also been verified on public dataset (MovieLens 20M). We believe such practical experience can be well generalized to other scenarios.
Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples. Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML). CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively. We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with much higher computational efficiency and better interpretability.
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could attract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.