Do you want to publish a course? Click here

On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular

146   0   0.0 ( 0 )
 Added by Paul Manneville
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyond which turbulence is uniform. Our current theoretical understanding of the problem is next reviewed ({S}2): linear theory and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large deviations and extreme values. Two appendices present some recent personal results obtained in plane Couette flow about patterning from numerical simulations and modeling attempts.



rate research

Read More

In wall-bounded flows, the laminar regime remain linearly stable up to large values of the Reynolds number while competing with nonlinear turbulent solutions issued from finite amplitude perturbations. The transition to turbulence of plane channel flow (plane Poiseuille flow) is more specifically considered via numerical simulations. Previous conflicting observations are reconciled by noting that the two-dimensional directed percolation scenario expected for the decay of turbulence may be interrupted by a symmetry-breaking bifurcation favoring localized turbulent bands. At the other end of the transitional range, a preliminary study suggests that the laminar-turbulent pattern leaves room to a featureless regime beyond a well defined threshold to be determined with precision.
83 - Paul Manneville 2016
In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of Reynolds numbers, the transitional range. The archetypical cases of Poiseuille pipe flow and plane Couette flow are first reviewed at the phenomenological level, together with a few other flow configurations. Theoretical approaches are then examined with particular emphasis on the existence of special nontrivial solutions to the Navier-Stokes equations at finite distance from laminar flow. Dynamical systems theory is most appropriate to analyze their role, in particular with respect to the transient character of turbulence in the lower transitional range. The extensions needed to deal with the prominent spatiotemporal features of the transition are then discussed. Turbulence growth/decay in terms of statistical physics of many-body systems and the relevance of directed percolation as a stochastic process able to account for it are next scrutinized. To conclude, we advocate the recourse to well-designed modeling able to provide us with a conceptually coherent picture of the full transitional range and put forward some open issues.
178 - Paul Manneville 2017
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffes approach [Phys. Fluids 9 (1997) 883--900] is used to show that, already at the local scale, drift flows breaking the problems spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
136 - Paul Manneville 2016
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical simulations that we have performed on a pattern displaying a wavelength modulation show a relaxation of that modulation in agreement with what one would expect from a standard approach in terms of dissipative structures in extended geometry though the structuration develops on a turbulent background. Some consequences are discussed.
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at $R=600$ and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا