Do you want to publish a course? Click here

Transition to turbulence in wall-bounded flows: Where do we stand?

84   0   0.0 ( 0 )
 Added by Paul Manneville
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of Reynolds numbers, the transitional range. The archetypical cases of Poiseuille pipe flow and plane Couette flow are first reviewed at the phenomenological level, together with a few other flow configurations. Theoretical approaches are then examined with particular emphasis on the existence of special nontrivial solutions to the Navier-Stokes equations at finite distance from laminar flow. Dynamical systems theory is most appropriate to analyze their role, in particular with respect to the transient character of turbulence in the lower transitional range. The extensions needed to deal with the prominent spatiotemporal features of the transition are then discussed. Turbulence growth/decay in terms of statistical physics of many-body systems and the relevance of directed percolation as a stochastic process able to account for it are next scrutinized. To conclude, we advocate the recourse to well-designed modeling able to provide us with a conceptually coherent picture of the full transitional range and put forward some open issues.



rate research

Read More

In wall-bounded flows, the laminar regime remain linearly stable up to large values of the Reynolds number while competing with nonlinear turbulent solutions issued from finite amplitude perturbations. The transition to turbulence of plane channel flow (plane Poiseuille flow) is more specifically considered via numerical simulations. Previous conflicting observations are reconciled by noting that the two-dimensional directed percolation scenario expected for the decay of turbulence may be interrupted by a symmetry-breaking bifurcation favoring localized turbulent bands. At the other end of the transitional range, a preliminary study suggests that the laminar-turbulent pattern leaves room to a featureless regime beyond a well defined threshold to be determined with precision.
178 - Paul Manneville 2017
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffes approach [Phys. Fluids 9 (1997) 883--900] is used to show that, already at the local scale, drift flows breaking the problems spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
140 - Paul Manneville 2014
The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyond which turbulence is uniform. Our current theoretical understanding of the problem is next reviewed ({S}2): linear theory and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large deviations and extreme values. Two appendices present some recent personal results obtained in plane Couette flow about patterning from numerical simulations and modeling attempts.
This paper presents a review of the topic of galaxy formation and evolution, focusing on basic features of galaxies, and how these observables reveal how galaxies and their stars assemble over cosmic time. I give an overview of the observed properties of galaxies in the nearby universe and for those at higher redshifts up to z~10. This includes a discussion of the major processes in which galaxies assemble and how we can now observe these - including the merger history of galaxies, the gas accretion and star formation rates. I show that for the most massive galaxies mergers and accretion are about equally important in the galaxy formation process between z = 1-3, while this likely differs for lower mass systems. I also discuss the mass differential evolution for galaxies, as well as how environment can affect galaxy evolution, although mass is the primary criteria for driving evolution. I also discuss how we are beginning to measure the dark matter content of galaxies at different epochs as measured through kinematics and clustering. Finally, I review how observables of galaxies, and the observed galaxy formation process, compares with predictions from simulations of galaxy formation, finding significant discrepancies in the abundances of massive galaxies and the merger history. I conclude by examining prospects for the future using JWST, Euclid, SKA, and the ELTs in addressing outstanding issues.
72 - Norbert Wermes 2018
Pixel detectors have been the working horse for high resolution, high rate and radiation particle tracking for the past 20 years. The field has spun off into imaging applications with equal uniqueness. Now the move is towards larger integration and fully monolithic devices with to be expected spin-off into imaging again. Many judices and prejudices that were around at times were overcome and surpassed. This paper attempts to give an account of the developments following a line of early prejudices and later insights.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا