No Arabic abstract
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 - 450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses converted to the bar{MS} scheme are: mud(2 GeV) = 3.70(17) MeV, ms(2 GeV) = 99.6(4.3) MeV and mc(mc) = 1.348(46) GeV. We obtain also the quark mass ratios ms/mud = 26.66(32) and mc/ms = 11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md = 0.470(56), leading to mu = 2.36(24) MeV and md = 5.03(26) MeV.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
We present the results of a lattice QCD calculation of the average up-down and strange quark masses and of the light meson pseudoscalar decay constants with Nf=2 dynamical fermions. The simulation is carried out at a single value of the lattice spacing with the twisted mass fermionic action at maximal twist, which guarantees automatic O(a)-improvement of the physical quantities. Quark masses are renormalized by implementing the non-perturbative RI-MOM renormalization procedure. Our results for the light quark masses are m_ud^{msbar}(2 GeV)= 3.85 +- 0.12 +- 0.40 MeV, m_s^{msbar}(2 GeV) = 105 +- 3 +- 9 MeV and m_s/m_ud = 27.3 +- 0.3 +- 1.2. We also obtain fK = 161.7 +- 1.2 +- 3.1 MeV and the ratio fK/fpi=1.227 +- 0.009 +- 0.024. From this ratio, by using the experimental determination of Gamma(K-> mu nu (gamma))/Gamma(pi -> mu nu (gamma)) and the average value of |Vud| from nuclear beta decays, we obtain |Vus|=0.2192(5)(45), in agreement with the determination from Kl3 decays and the unitarity constraint.
Pi-Pi scattering is investigated for the first time for Nf=2+1+1 dynamical quark flavours using Wilson twisted mass fermions. Luschers finite size method is used to relate energy shifts in finite volume to scattering quantities like the scattering length in the I=2 channel. The computation is performed at several pion masses and lattice spacings utilising the stochastic LapH method.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06 fm, a~0.08 fm and a~0.09 fm with lattice sizes ranging from L~1.9 fm to L~3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.