Pi-Pi scattering is investigated for the first time for Nf=2+1+1 dynamical quark flavours using Wilson twisted mass fermions. Luschers finite size method is used to relate energy shifts in finite volume to scattering quantities like the scattering length in the I=2 channel. The computation is performed at several pion masses and lattice spacings utilising the stochastic LapH method.
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06 fm, a~0.08 fm and a~0.09 fm with lattice sizes ranging from L~1.9 fm to L~3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.
We present results on the masses of the low-lying baryons using ten ensembles of gauge configurations with $N_f =2+1+1$ dynamical twisted mass fermions, at three values of the lattice spacing, spanning a pion mass range from about 210 MeV to about 430 MeV. The strange and charm quark masses are tuned to approximately their physical values. We examine isospin symmetry breaking effects on the baryon mass and the dependence on the lattice spacing. After taking the continuum limit we use chiral perturbation theory to extrapolate to the physical vlaue of the pion mass for all forty baryons. We provide predictions for the masses of doubly and triply charmed baryons that have not yet been measured experimentally.
We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results obtained with Nf=2 flavours. The problem of extracting the mass of the K- and D-mesons is discussed, and the tuning of the strange and charm quark masses examined. Finally we compare two methods of extracting the lattice spacings to check the consistency of our data and we present some first results of ChiPT fits in the light meson sector.
The masses of the low lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks correspond to pseudo scalar masses in the range of about 210~MeV to 430~MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing $a=0.094$~fm, 0.082~fm and 0.065~fm determined from the nucleon mass. We check for both finite volume and cut-off effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) $chi$PT. After taking the continuum limit and extrapolating to the physical pion mass our results are in good agreement with experiment. We provide predictions for the mass of the doubly charmed $Xi_{cc}^*$, as well as of the doubly and triply charmed $Omega$s that have not yet been determined experimentally.
We present the first lattice Nf=2+1+1 determination of the tensor form factor $f_T^{D pi(K)}(q^2)$ corresponding to the semileptonic and rare $D to pi(K)$ decays as a function of the squared 4-momentum transfer $q^2$. Together with our recent determination of the vector and scalar form factors we complete the set of hadronic matrix elements regulating the semileptonic and rare $D to pi(K)$ transitions within and beyond the Standard Model, when a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by ETMC with Nf=2+1+1 flavors of dynamical quarks, which include in the sea, besides two light mass-degenerate quarks, also the strange and charm quarks with masses close to their physical values. We simulated at three different values of the lattice spacing and with pion masses as small as 220 MeV. The matrix elements of the tensor current are determined for plenty of kinematical conditions in which parent and child mesons are either moving or at rest. As in the case of the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed also in the data for the tensor form factor and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum and infinite volume limits we determine the tensor form factor in the whole kinematical region accessible in the experiments. A set of synthetic data points, representing our results for $f_T^{D pi(K)}(q^2)$ for several selected values of $q^2$, is provided and the corresponding covariance matrix is also available. At zero four-momentum transfer we get $f_T^{D pi}(0) = 0.506 (79)$ and $f_T^{D K}(0) = 0.687 (54)$, which correspond to $f_T^{D pi}(0)/f_+^{D pi}(0) = 0.827 (114)$ and $f_T^{D K}(0)/f_+^{D K}(0)= 0.898 (50)$.