Do you want to publish a course? Click here

An observational and theoretical view of the radial distribution of HI gas in galaxies

395   0   0.0 ( 0 )
 Added by Jing Wang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the radial distribution of HI gas for 23 disk galaxies with unusually high HI content from the Bluedisk sample, along with a similar-sized sample of normal galaxies. We propose an empirical model to fit the radial profile of the HI surface density, an exponential function with a depression near the center. The radial HI surface density profiles are very homogeneous in the outer regions of the galaxy; the exponentially declining part of the profile has a scale-length of $sim 0.18$ R1, where R1 is the radius where the column density of the HI is 1 M$_{odot}$ pc$^{-2}$. This holds for all galaxies, independent of their stellar or HI mass. The homogenous outer profiles, combined with the limited range in HI surface density in the non-exponential inner disk, results in the well-known tight relation between HI size and HI mass. By comparing the radial profiles of the HI-rich galaxies with those of the control systems, we deduce that in about half the galaxies, most of the excess gas lies outside the stellar disk, in the exponentially declining outer regions of the HI disk. In the other half, the excess is more centrally peaked. We compare our results with existing smoothed-particle hydrodynamical simulations and semi-analytic models of disk galaxy formation in a $Lambda$ Cold Dark Matter universe. Both the hydro simulations and the semi-analytic models reproduce the HI surface density profiles and the HI size-mass relation without further tuning of the simulation and model inputs. In the semi-analytic models, the universal shape of the outer HI radial profiles is a consequence of the {em assumption} that infalling gas is always distributed exponentially. The conversion of atomic gas to molecular form explains the limited range of HI surface densities in the inner disk. These two factors produce the tight HI mass-size relation.



rate research

Read More

Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical way by studying the distribution of noise peaks in the HI data cubes obtained for 40 galaxies observed with WSRT. We find that galaxies whose HI mass fraction is high relative to standard scaling relations have an excess HI mass in the surrounding environment as well. Gas in the environment consists of gas clumps which are individually below the detection limit of our HI data. These clumps may be hosted by small satellite galaxies andor be the high-density peaks of a more diffuse gas distribution in the inter-galactic medium. We interpret this result as an indication for a picture in which the HI-rich central galaxies accrete gas from an extended gas reservoir present in their environment.
By means of N-body simulations, we show that radial migration in galaxy disks, induced by bar and spiral arms, leads to significant azimuthal variations in the metallicity distribution of old stars at a given distance from the galaxy center. Metals do not show an axisymmetric distribution during phases of strong migration. Azimuthal variations are visible during the whole phase of strong bar phase, and tend to disappear as the effect of radial migration diminishes, together with a reduction in the bar strength. These results suggest that the presence of inhomogeneities in the metallicity distribution of old stars in a galaxy disk can be a probe of ongoing strong migration. Such signatures may be detected in the Milky Way by Gaia (and complementary spectroscopic data), as well as in external galaxies, by IFU surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a homogeneous, azimuthally symmetric, stellar distribution in the disk - and migration turns out to be two distinct processes, the effects of mixing starting to be visible when strong migration is over.
82 - D. Burgarella 2020
The first generation of stars were born a few hundred million years after the big bang. These stars synthesized elements heavier than H and He, that are later expelled into the interstellar medium, initiating the rise of metals. Within this enriched medium, the first dust grains formed. This event is cosmological crucial for molecule formation as dust plays a major role by cooling low-metallicity star-forming clouds which can fragment to create lower mass stars. Collecting information on these first dust grains is difficult because of the negative alliance of large distances and low dust masses. We combine the observational information from galaxies at redshifts 5 < z < 10 to constrain their dust emission and theoretically understand the first evolutionary phases of the dust cycle. Spectral energy distributions (SEDs) are fitted with CIGALE and the physical parameters and their evolution are modelled. From this SED fitting, we build a dust emission template for this population of galaxies in the epoch of reionization. Our new models explain why some early galaxies are observed and others are not. We follow in time the formation of the first grains by supernovae later destroyed by other supernova blasts and expelled in the circumgalactic and intergalactic media. We have found evidence for the first dust grains formed in the universe. But, above all, this letter underlines the need to collect more data and to develop new facilities to further constrain the dust cycle in galaxies in the epoch of reionization.
Using a sample of 38 radio-loud galaxy mergers at z<=0.2, we confirm the high detection rate (~84%) of HI 21-cm absorption in mergers, which is significantly higher (~4 times) than in non-mergers. The distributions of the HI column density [N(HI)] and velocity shift of the absorption with respect to the systemic redshift of the galaxy hosting the radio source in mergers are significantly different from that in non-mergers. We investigate the connection of the nuclear HI gas with various multi-wavelength properties of the mergers. While the inferred N(HI) and gas kinematics do not show strong (i.e. >=3-sigma level) correlation with galaxy properties, we find that the incidence and N(HI) of absorption tend to be slightly higher at smaller projected separations between the galaxy pairs and among the lower stellar mass-radio galaxies. The incidence, N(HI) and line width of HI absorption increase from the pre-merger to the post-merger stages. The 100% detection rate in post-mergers indicates that the neutral gas in the circumnuclear regions survives the coalescence period and is not yet quenched by the nuclear radio activity.
Fluctuation dynamos are thought to play an essential role in magnetized galaxy evolution, saturating within $sim0.01~$Gyr and thus potentially acting as seeds for large-scale dynamos. However, unambiguous observational confirmation of the fluctuation dynamo action in a galactic environment is still missing. This is because, in spiral galaxies, it is difficult to differentiate between small-scale magnetic fields generated by a fluctuation dynamo and those due to the tangling of the large-scale field. We propose that observations of magnetic fields in elliptical galaxies would directly probe the fluctuation dynamo action. This is motivated by the fact that in ellipticals, due to their lack of significant rotation, the conventional large-scale dynamo is absent and the fluctuation dynamo is responsible for controlling the magnetic field strength and structure. By considering turbulence injected by Type Ia supernova explosions and possible magnetic field amplification by cooling flows, we estimate expected magnetic field strengths of $0.2~-~1 ,mu{rm G}$ in quiescent elliptical galaxies. We use a semi-analytic model of galaxy formation to estimate the distribution and redshift evolution of field strengths, tentatively finding a decrease in magnetic field strength with decreasing redshift. We analyse a sample of radio sources that exhibit the Laing-Garrington (LG) effect (radio polarization asymmetry in jets) and infer magnetic field strengths between $0.14~-~1.33 ,mu{rm G}$ for a uniform thermal electron density and between $1.36~-~6.21,mu{rm G}$ for the thermal electron density following the King profile. We examine observational techniques for measuring the magnetic field saturation state in elliptical galaxies, focusing on Faraday RM grids, the LG effect, synchrotron emission, and gravitational lensing, finding appealing prospects for future empirical analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا