Do you want to publish a course? Click here

Magnetic fields in elliptical galaxies: an observational probe of the fluctuation dynamo action

130   0   0.0 ( 0 )
 Added by Amit Seta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluctuation dynamos are thought to play an essential role in magnetized galaxy evolution, saturating within $sim0.01~$Gyr and thus potentially acting as seeds for large-scale dynamos. However, unambiguous observational confirmation of the fluctuation dynamo action in a galactic environment is still missing. This is because, in spiral galaxies, it is difficult to differentiate between small-scale magnetic fields generated by a fluctuation dynamo and those due to the tangling of the large-scale field. We propose that observations of magnetic fields in elliptical galaxies would directly probe the fluctuation dynamo action. This is motivated by the fact that in ellipticals, due to their lack of significant rotation, the conventional large-scale dynamo is absent and the fluctuation dynamo is responsible for controlling the magnetic field strength and structure. By considering turbulence injected by Type Ia supernova explosions and possible magnetic field amplification by cooling flows, we estimate expected magnetic field strengths of $0.2~-~1 ,mu{rm G}$ in quiescent elliptical galaxies. We use a semi-analytic model of galaxy formation to estimate the distribution and redshift evolution of field strengths, tentatively finding a decrease in magnetic field strength with decreasing redshift. We analyse a sample of radio sources that exhibit the Laing-Garrington (LG) effect (radio polarization asymmetry in jets) and infer magnetic field strengths between $0.14~-~1.33 ,mu{rm G}$ for a uniform thermal electron density and between $1.36~-~6.21,mu{rm G}$ for the thermal electron density following the King profile. We examine observational techniques for measuring the magnetic field saturation state in elliptical galaxies, focusing on Faraday RM grids, the LG effect, synchrotron emission, and gravitational lensing, finding appealing prospects for future empirical analysis.



rate research

Read More

245 - Aritra Basu , Sharanya Sur 2021
Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters is yet to be observed. To investigate the expected polarization in the ICM, we use high resolution ($1$ kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving ($l_{rm f}$) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different $l_{rm f}$ is affected due to smoothing by a finite telescope resolution. The mean fractional polarization $langle prangle$ vary as $langle p rangle propto l_{rm f}^{1/2}$ with $langle p rangle > 20%$ for $l_{rm f} gtrsim 60$ kpc, at frequencies $ u > 4,{rm GHz}$. Faraday depolarization at $ u < 3$ GHz leads to deviation from this relation, and in combination with beam depolarization, filamentary polarized structures are completely erased, reducing $langle p rangle$ to below 5% level at $ u lesssim1$,GHz. Smoothing on scales up to $30$ kpc reduces $langle p rangle$ above $4$ GHz by at most a factor of 2 compared to that expected at $1$ kpc resolution of the simulations, especially for $l_{rm f} gtrsim 100$ kpc, while at $ u < 3$ GHz, $langle p rangle$ is reduced by a factor of more than 5 for $l_{rm f} gtrsim 100$ kpc, and by more than 10 for $l_{rm f} lesssim 100$ kpc. Our results suggest that observational estimates of, or constrain on, $langle p rangle$ at $ u gtrsim 4$ GHz could be used as an indicator of the turbulent driving scale in the ICM.
Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out if magnetic fields observed in galaxies were generated in the Early Universe or are of astrophysical nature. Motivated by this we use our magnetic tracers algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy in four scenarios: magnetised solely by primordial magnetic fields, magnetised exclusively by SN-injected magnetic fields, and two combined primordial + SN magnetisation cases. We find that once primordial magnetic fields with a comoving strength $B_0 >10^{-12}$ G are considered, they remain the primary source of galaxy magnetisation. Our magnetic tracers show that, even combined with galactic sources of magnetisation, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic and intergalactic medium can be used to probe $B_0$ without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically-sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.
166 - Ortwin Gerhard 2010
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integral field absorption spectroscopy and with planetary nebulae as tracers, velocity dispersion and rotation profiles have been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the outer edge at ~150 kpc. The results are generally consistent with the known dichotomy of elliptical galaxy types, but some galaxies show more complex rotation profiles in their halos and there is a higher incidence of misalignments, indicating triaxiality. Dynamical models have shown a range of slopes for the total mass profiles, and that the inner dark matter densities in ellipticals are higher than in spiral galaxies, indicating earlier assembly redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals and comparison with dynamical mass determinations indicates that non-thermal components to the pressure may be important in the inner ~10 kpc, and that the properties of these systems are closely related to their group environments. First results on the outer halo stellar population properties do not yet give a clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances indicate longer star formation histories pointing towards late accretion of the halo. This is consistent with independent evidence for on-going accretion, and suggests a connection to the observed size evolution of elliptical galaxies with redshift.
We present a study of the relationship between black hole accretion rate (BHAR) and star formation rate (SFR) in a sample of giant elliptical galaxies. These galaxies, which live at the centers of galaxy groups and clusters, have star formation and black hole activity that is primarily fueled by gas condensing out of the hot intracluster medium. For a sample of 46 galaxies spanning 5 orders of magnitude in BHAR and SFR, we find a mean ratio of log(BHAR/SFR) = -1.45 +/- 0.2, independent of the methodology used to constrain both SFR and BHAR. This ratio is significantly higher than most previously-published values for field galaxies. We investigate whether these high BHAR/SFR ratios are driven by high BHAR, low SFR, or a different accretion efficiency in radio galaxies. The data suggest that the high BHAR/SFR ratios are primarily driven by boosted black hole accretion in spheroidal galaxies compared to their disk counterparts. We propose that angular momentum of the cool gas is the primary driver in suppressing BHAR in lower mass galaxies, with massive galaxies accreting gas that has condensed out of the hot phase on nearly radial trajectories. Additionally, we demonstrate that the relationship between specific BHAR and SFR has much less scatter over 6 orders of magnitude in both parameters, due to competing dependence on morphology between the M_BH--M_* and BHAR--SFR relations. In general, active galaxies selected by typical techniques have sBHAR/sSFR ~ 10, while galactic nuclei with no clear AGN signatures have sBHAR/sSFR ~ 1, consistent with a universal M_BH--M_spheroid relation.
We analyze the radial distribution of HI gas for 23 disk galaxies with unusually high HI content from the Bluedisk sample, along with a similar-sized sample of normal galaxies. We propose an empirical model to fit the radial profile of the HI surface density, an exponential function with a depression near the center. The radial HI surface density profiles are very homogeneous in the outer regions of the galaxy; the exponentially declining part of the profile has a scale-length of $sim 0.18$ R1, where R1 is the radius where the column density of the HI is 1 M$_{odot}$ pc$^{-2}$. This holds for all galaxies, independent of their stellar or HI mass. The homogenous outer profiles, combined with the limited range in HI surface density in the non-exponential inner disk, results in the well-known tight relation between HI size and HI mass. By comparing the radial profiles of the HI-rich galaxies with those of the control systems, we deduce that in about half the galaxies, most of the excess gas lies outside the stellar disk, in the exponentially declining outer regions of the HI disk. In the other half, the excess is more centrally peaked. We compare our results with existing smoothed-particle hydrodynamical simulations and semi-analytic models of disk galaxy formation in a $Lambda$ Cold Dark Matter universe. Both the hydro simulations and the semi-analytic models reproduce the HI surface density profiles and the HI size-mass relation without further tuning of the simulation and model inputs. In the semi-analytic models, the universal shape of the outer HI radial profiles is a consequence of the {em assumption} that infalling gas is always distributed exponentially. The conversion of atomic gas to molecular form explains the limited range of HI surface densities in the inner disk. These two factors produce the tight HI mass-size relation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا