No Arabic abstract
Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical way by studying the distribution of noise peaks in the HI data cubes obtained for 40 galaxies observed with WSRT. We find that galaxies whose HI mass fraction is high relative to standard scaling relations have an excess HI mass in the surrounding environment as well. Gas in the environment consists of gas clumps which are individually below the detection limit of our HI data. These clumps may be hosted by small satellite galaxies andor be the high-density peaks of a more diffuse gas distribution in the inter-galactic medium. We interpret this result as an indication for a picture in which the HI-rich central galaxies accrete gas from an extended gas reservoir present in their environment.
We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. Twenty galaxies are detected in HI in this $zsim0.044$ group, with a $3sigma$ column density sensitivity of $N_mathrm{HI} = 1.6times10^{20},mathrm{cm}^{-2}$. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially-resolved HI total intensity and velocity maps for each of the objects, which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of $log_{10}(M_mathrm{dyn}/mathrm{M}_odot) = 12.32$, and is unusually gas-rich, with an HI-to-stellar mass ratio of $log_{10}(f_mathrm{HI}^mathrm{*}) = -0.2$, which is 0.7 dex greater than expected. The groups high HI content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially-resolved HI in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.
We present resolved HI and CO observations of three galaxies from the HIghMass sample, a sample of HI-massive ($M_{HI} > 10^{10} M_odot$), gas-rich ($M_{HI}$ in top $5%$ for their $M_*$) galaxies identified in the ALFALFA survey. Despite their high gas fractions, these are not low surface brightness galaxies, and have typical specific star formation rates (SFR$/M_*$) for their stellar masses. The three galaxies have normal star formation rates for their HI masses, but unusually short star formation efficiency scale lengths, indicating that the star formation bottleneck in these galaxies is in the conversion of HI to H$_2$, not in converting H$_2$ to stars. In addition, their dark matter spin parameters ($lambda$) are above average, but not exceptionally high, suggesting that their star formation has been suppressed over cosmic time but are now becoming active, in agreement with prior H$alpha$ observations.
Our work is based on the Bluedisk project, a program to map the neutral gas in a sample of 25 HI-rich spirals and a similar number of control galaxies with the Westerbork Synthesis Radio Telescope (WSRT). In this paper we focus on the HI properties of the galaxies in the environment of our targeted galaxies. In total, we extract 65 galaxies from the WSRT cubes with stellar masses between $10^8M_{odot}$ and $10^{11}M_{odot}$. Most of these galaxies are located on the same HI mass-size relation and HI-plane as normal spiral galaxies. We find that companions around HI-rich galaxies tend to be HI-rich as well and to have larger R90,HI/R50,HI. This suggests a scenario of HI conformity, similar to the colour conformity found by Weinmann et al. (2006): galaxies tend to adopt the HI properties of their neighbours. We visually inspect the outliers from the HI mass-size relation and galaxies which are offset from the HI plane and find that they show morphological and kinematical signatures of recent interactions with their environment. We speculate that these outliers have been disturbed by tidal or ram-pressure stripping processes, or in a few cases, by accretion events.
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
We present and explore the resolved atomic hydrogen (HI) content of 13 HI-rich and late-type dominated groups denoted `Choirs. We quantify the HI content of the Choir galaxies with respect to the median of the HI-mass fraction ($f_{textrm{HI}}$) of their grandparent HIPASS sample. We find that the HI mass fraction of the Choir galaxies is dispersed around the HIPASS median in the range $-1.4 leq Delta f_{textrm{HI}}textrm{[dex]}leq 0.7$, from HI-excess to HI-deficient galaxy regime. The HI-excess/HI-deficient galaxies contain more/less than 2.5 times their expected HI content with respect to the HIPASS median. We show and discuss that the environmental processing in Choirs occurs via tidal stripping and galaxy mergers. Our analysis suggests that tidal stripping contributes to the loss of the HI, while galaxy mergers contribute to the enhancement of the HI. Exploring the mid-infrared properties of Choir galaxies we find possible environmental processing in only nine Choir galaxies, which indicates that environmental processing is more perceptible in the HI content than the mid-infrared properties. Moreover, we find that environmental processing occurs in Choir groups regardless of their global environment, whether they are in isolation or in proximity to the denser structures, such as cosmic web filaments. We explore possible scenarios of the Choirs evolution, taking into account their HI content, velocity dispersion, crossing time and their global environment. We conclude that the most likely evolution for the majority of Choir groups is that they will become more compact as their members undergo multiple HI-rich mergers.