Do you want to publish a course? Click here

Conormal problem of higher-order parabolic systems

184   0   0.0 ( 0 )
 Added by Hongjie Dong
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The paper is a comprehensive study of the $L_p$ and the Schauder estimates for higher-order divergence type parabolic systems with discontinuous coefficients in the half space and cylindrical domains with conormal derivative boundary condition. For the $L_p$ estimates, we assume that the leading coefficients are only bounded measurable in the $t$ variable and $VMO$ with respect to $x$. We also prove the Schauder estimates in two situations: the coefficients are Holder continuous only in the $x$ variable; the coefficients are Holder continuous in both variables.



rate research

Read More

151 - Jongkeun Choi , Hongjie Dong , 2021
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locally sufficiently close to a Lipschitz function of $m$ variables, where $m=0,ldots,d-2$, with respect to the Hausdorff distance. We consider solutions in both $L_p$-based Sobolev spaces and $L_{q,p}$-based mixed-norm Sobolev spaces.
We establish existence and various estimates of fundamental matrices and Greens matrices for divergence form, second order strongly parabolic systems in arbitrary cylindrical domains under the assumption that solutions of the systems satisfy an interior H{o}lder continuity estimate. We present a unified approach valid for both the scalar and the vectorial cases.
74 - Hongjie Dong , Seick Kim 2017
We construct fundamental solutions of second-order parabolic systems of divergence form with bounded and measurable leading coefficients and divergence free first-order coefficients in the class of $BMO^{-1}_x$, under the assumption that weak solutions of the system satisfy a certain local boundedness estimate. We also establish Gaussian upper bound for such fundamental solutions under the same conditions.
We study the divergence form second-order elliptic equations with mixed Dirichlet-conormal boundary conditions. The unique $W^{1,p}$ solvability is obtained with $p$ being in the optimal range $(4/3,4)$. The leading coefficients are assumed to have small mean oscillations and the boundary of domain is Reifenberg flat. We also assume that the two boundary conditions are separated by some Reifenberg flat set of co-dimension $2$ on the boundary.
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the finite time extinction and polynomial decay properties are proved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا