Do you want to publish a course? Click here

Optimal regularity of mixed Dirichlet-conormal boundary value problems for parabolic operators

152   0   0.0 ( 0 )
 Added by Hongjie Dong
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locally sufficiently close to a Lipschitz function of $m$ variables, where $m=0,ldots,d-2$, with respect to the Hausdorff distance. We consider solutions in both $L_p$-based Sobolev spaces and $L_{q,p}$-based mixed-norm Sobolev spaces.



rate research

Read More

We prove the existence of unique solutions to the Dirichlet boundary value problems for linear second-order uniformly parabolic operators in either divergence or non-divergence form with boundary blowup low-order coefficients. The domain is possibly time varying, non-smooth, and satisfies the exterior measure condition.
We study the divergence form second-order elliptic equations with mixed Dirichlet-conormal boundary conditions. The unique $W^{1,p}$ solvability is obtained with $p$ being in the optimal range $(4/3,4)$. The leading coefficients are assumed to have small mean oscillations and the boundary of domain is Reifenberg flat. We also assume that the two boundary conditions are separated by some Reifenberg flat set of co-dimension $2$ on the boundary.
We study the obstacle problem for parabolic operators of the type $partial_t + L$, where $L$ is an elliptic integro-differential operator of order $2s$, such as $(-Delta)^s$, in the supercritical regime $s in (0,frac{1}{2})$. The best result in this context was due to Caffarelli and Figalli, who established the $C^{1,s}_x$ regularity of solutions for the case $L = (-Delta)^s$, the same regularity as in the elliptic setting. Here we prove for the first time that solutions are actually textit{more} regular than in the elliptic case. More precisely, we show that they are $C^{1,1}$ in space and time, and that this is optimal. We also deduce the $C^{1,alpha}$ regularity of the free boundary. Moreover, at all free boundary points $(x_0,t_0)$, we establish the following expansion: $$(u - varphi)(x_0+x,t_0+t) = c_0(t - acdot x)_+^2 + O(t^{2+alpha}+|x|^{2+alpha}),$$ with $c_0 > 0$, $alpha > 0$ and $a in mathbb R^n$.
72 - Nick Lindemulder 2018
In this paper we consider second order parabolic partial differential equations subject to the Dirichlet boundary condition on smooth domains. We establish weighted $L_{q}$-maximal regularity in weighted Triebel-Lizorkin spaces for such parabolic problems with inhomogeneous boundary data. The weights that we consider are power weights in time and space, and yield flexibility in the optimal regularity of the initial-boundary data, allow to avoid compatibility conditions at the boundary and provide a smoothing effect. In particular, we can treat rough inhomogeneous boundary data.
112 - Hongjie Dong , Zongyuan Li 2020
We consider elliptic equations and systems in divergence form with the conormal or the Robin boundary conditions, with small BMO (bounded mean oscillation) or variably partially small BMO coefficients. We propose a new class of domains which are locally close to a half space (or convex domains) with respect to the Lebesgue measure in the system (or scalar, respectively) case, and obtain the $W^1_p$ estimate for the conormal problem with the homogeneous boundary condition. Such condition is weaker than the Reifenberg flatness condition, for which the closeness is measured in terms of the Hausdorff distance, and the semi-convexity condition. For the conormal problem with inhomogeneous boundary conditions, we also assume that the domain is Lipschitz. By using these results, we obtain the $W^1_p$ and weighted $W^1_p$ estimates for the Robin problem in these domains.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا