In this paper, we consider the asymptotic behavior of the nonlocal parabolic problem [ u_{t}=Delta u+displaystylefrac{lambda f(u)}{big(int_{Omega}f(u)dxbig)^{p}}, xin Omega, t>0, ] with homogeneous Dirichlet boundary condition, where $lambda>0, p>0$, $f$ is nonincreasing. It is found that: (a) For $0<pleq1$, $u(x,t)$ is globally bounded and the unique stationary solution is globally asymptotically stable for any $lambda>0$; (b) For $1<p<2$, $u(x,t)$ is globally bounded for any $lambda>0$; (c) For $p=2$, if $0<lambda<2|partialOmega|^2$, then $u(x,t)$ is globally bounded, if $lambda=2|partialOmega|^2$, there is no stationary solution and $u(x,t)$ is a global solution and $u(x,t)toinfty$ as $ttoinfty$ for all $xinOmega$, if $lambda>2|partialOmega|^2$, there is no stationary solution and $u(x,t)$ blows up in finite time for all $xinOmega$; (d) For $p>2$, there exists a $lambda^*>0$ such that for $lambda>lambda^*$, or for $0<lambdaleqlambda^*$ and $u_0(x)$ sufficiently large, $u(x,t)$ blows up in finite time. Moreover, some formal asymptotic estimates for the behavior of $u(x,t)$ as it blows up are obtained for $pgeq2$.
In this paper we study a nonlocal diffusion problem on a manifold. These kind of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.
We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $mathbb{R}^d_+$, where the coefficients are the product of $x_d^alpha, alpha in (-infty, 1),$ and a bounded uniformly elliptic matrix of coefficients. Thus, the coefficients are singular or degenerate near the boundary ${x_d =0}$ and they may not locally integrable. The novelty of the work is that we find proper weights under which the existence, uniqueness, and regularity of solutions in Sobolev spaces are established. These results appear to be the first of their kind and are new even if the coefficients are constant. They are also readily extended to systems of equations.