No Arabic abstract
We discuss the near singularity region of the linear mass Vaidya metric. In particular we investi- gate the structure in the numerical solutions for the scattering of scalar and electromagnetic metric perturbations from the singularity. In addition to directly integrating the full wave-equation, we use the symmetry of the metric to reduce the problem to that of an ODE. We observe that, around the total evaporation point, quasi-normal like oscillations appear, indicating that this may be an interesting model for the description of the end-point of black hole evaporation.
We discuss the near singularity region of the linear mass Vaidya metric for massless particles with non-zero angular momentum. In particular we look at massless geodesics with non-zero angular momentum near the vanishing point of a special subclass of linear mass Vaidya metrics. We also investigate this same structure in the numerical solutions for the scattering of massless scalars from the singularity. Finally we make some comments on the possibility of using this metric as a semi-classical model for the end-point of black hole evaporation.
In this work, we present a numerical scheme to study the quasinormal modes of the time-dependent Vaidya black hole metric in asymptotically anti-de Sitter spacetime. The proposed algorithm is primarily based on a generalized matrix method for quasinormal modes. The main feature of the present approach is that the quasinormal frequency, as a function of time, is obtained by a generalized secular equation and therefore a satisfactory degree of precision is achieved. The implications of the results are discussed.
Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized Vaidya solutions in the $n$-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity with a singular reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law, and present the generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this spacetime. In addition, the usual Clausius relation $delta Q= TdS$ holds on the apparent horizon, which implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution. Furthermore, the covariant generalized Minser-Sharp mass in the $n$-dimensional de Rham-Gabadadze-Tolley massive gravity is also derived by taking a general metric ansatz into account.
We give a self-contained introduction into the metric-affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang-Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric-affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of translations is explained in detail.
We study timelike and null geodesics in a non-singular black hole metric proposed by Hayward. The metric contains an additional length-scale parameter $ell$ and approaches the Schwarzschild metric at large radii while approaches a constant at small radii so that the singularity is resolved. We tabulate the various critical values of $ell$ for timelike and null geodesics: the critical values for the existence of horizon, marginally stable circular orbit and photon sphere. We find the photon sphere exists even if the horizon is absent and two marginally stable circular orbits appear if the photon sphere is absent and a stable circular orbit for photons exists for a certain range of $ell$. We visualize the image of a black hole and find that blight rings appear even if the photon sphere is absent.