Do you want to publish a course? Click here

Screening and Collective Modes in Disordered Graphene Antidot Lattices

463   0   0.0 ( 0 )
 Added by Rafael Roldan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a $pi$-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random phase approximation. The effect of different kinds of disorder, such as geometric and chemical disorder, are included in our calculations. We highlight the main differences of GALs with respect to single-layer graphene (SLG). Our results show that, in addition to the well-understood bulk plasmon in doped samples, inter-band plasmons appear in GALs. We further show that the static screening properties of undoped and doped GALs are quantitatively different from SLG.



rate research

Read More

343 - B.N. Narozhny , I.V. Gornyi , 2020
Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to electronic transport. Here we provide a consistent, unified calculation of the dispersion relations of the hydrodynamic collective modes in graphene. Taking into account viscous effects, we show that the hydrodynamic sound mode in graphene becomes overdamped at sufficiently large momentum scales. Extending the linearized theory beyond the hydrodynamic regime, we connect the diffusive hydrodynamic charge density fluctuations with plasmons.
Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particularly efficient way of achieving a high bulk mobility. Nanopatterning graphene can add extra damage and drastically reduce sample mobility by edge disorder. Preparing etched graphene nanostructures on top of an hBN substrate instead of SiO2 is no remedy, as transport characteristics are still dominated by edge roughness. Here we show that etching fully encapsulated graphene on the nanoscale is more gentle and the high mobility can be preserved. To this end, we prepared graphene antidot lattices where we observe magnetotransport features stemming from ballistic transport. Due to the short lattice period in our samples we can also explore the boundary between the classical and the quantum transport regime.
205 - S. Heydrich , M. Hirmer , C. Preis 2010
We have investigated antidot lattices, which were prepared on exfoliated graphene single layers via electron-beam lithography and ion etching, by means of scanning Raman spectroscopy. The peak positions, peak widths and intensities of the characteristic phonon modes of the carbon lattice have been studied systematically in a series of samples. In the patterned samples, we found a systematic stiffening of the G band mode, accompanied by a line narrowing, while the 2D mode energies are found to be linearly correlated with the G mode energies. We interpret this as evidence for p-type doping of the nanostructured graphene.
Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function $varepsilon$ upon creation of midgap states but no metallic divergence of the static $varepsilon$ at small momentum transfer $qto 0$. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale $l_c$ beyond which screening is suppressed emerges, which we identify with the Anderson localization length.
With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene field-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا