Do you want to publish a course? Click here

Enhanced Screening in Chemically Functionalized Graphene

410   0   0.0 ( 0 )
 Added by Shengjun Yuan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function $varepsilon$ upon creation of midgap states but no metallic divergence of the static $varepsilon$ at small momentum transfer $qto 0$. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale $l_c$ beyond which screening is suppressed emerges, which we identify with the Anderson localization length.



rate research

Read More

Using density-functional calculations, we study the effect of sp$^3$-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 $mu_B$ always appears in graphene. This effect is similar to that of H adsorption, which saturates one $p_z$ orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several $p_z$ orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means.
126 - S. Krompiewski 2019
It is known that there is a wide class of quasi-two-dimensional graphenelike nanomaterials which in many respects can outperform graphene. So, here in addition to graphene, the attention is directed to stanene (buckled honeycomb structure) and phosphorene (puckered honeycomb structure). It is shown that, depending on the doping, these materials can have magnetically ordered edges. Computed diagrams of magnetic phases illustrate that, on the one hand, n-type doped narrow zigzag nanoribbons of graphene and stanene have antiferromagnetically aligned magnetic moments between the edges. On the other hand, however, in the case of phosphorene nanoribbons the zigzag edges can have ferromagnetically aligned magnetic moments for the p-type doping. The edge magnetism critically influences transport properties of the nanoribbons, and if adequately controlled can make them attractive for spintronics.
We perform {textit ab initio} calculations for the strain-induced formation of non-hexagonal-ring defects in graphene, graphane (planar CH), and graphenol (planar COH). We find that the simplest of such topological defects, the Stone-Wales defect, acts as a seed for strain-induced dissociation and multiplication of topological defects. Through the application of inhomogeneous deformations to graphene, graphane and graphenol with initially small concentrations of pentagonal and heptagonal rings, we obtain several novel stable structures that possess, at the same time, large concentrations of non-hexagonal rings (from fourfold to elevenfold) and small formation energies.
206 - M. M. Fogler , E. McCann 2010
We analyze the response of bilayer graphene to an external transverse electric field using a variational method. A previous attempt to do so in a recent paper by Falkovsky [Phys. Rev. B 80, 113413 (2009)] is shown to be flawed. Our calculation reaffirms the original results obtained by one of us [E. McCann, Phys. Rev. B 74, 161403(R) (2006)] by a different method. Finally, we generalize these original results to describe a dual-gated bilayer graphene device.
134 - E. H. Hwang , S. Das Sarma 2008
We calculate the temperature dependent conductivity of graphene in the presence of randomly distributed Coulomb impurity charges arising from the temperature dependent screening of the Coulomb disorder without any phonons. The purely electronic temperature dependence of our theory arises from two independent mechanisms: the explicit temperature dependence of the finite temperature dielectric function $epsilon(q,T)$ and the finite temperature energy averaging of the transport scattering time. We find that the calculated temperature dependent conductivity is non-monotonic, decreasing with temperature at low temperatures, and increasing at high temperatures. We provide a critical comparison with the corresponding physics in semiconductor-based parabolic band 2D electron gas systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا