Do you want to publish a course? Click here

Bounding the socles of powers of squarefree monomial ideals

208   0   0.0 ( 0 )
 Added by Juergen Herzog
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e., $u otin I^{k}$ and $ux_{i} in I^{k}$ for $1 leq i leq n$. We prove that if a monomial $x_1^{a_1}cdots x_n^{a_n}$ belongs to $Soc(S/I^{k})$, then $a_ileq k-1$ for all $1 leq i leq n$. We then discuss squarefree monomial ideals $I subset S$ for which $x_{[n]}^{k-1} in Soc(S/I^{k})$, where $x_{[n]} = x_{1}x_{2}cdots x_{n}$. Furthermore, we give a combinatorial characterization of finite graphs $G$ on $[n] = {1, ldots, n}$ for which $depth S/(I_{G})^{2}=0$, where $I_{G}$ is the edge ideal of $G$.



rate research

Read More

Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related or have linear resolution. We also consider the so-called squarefree Ratliff property.
215 - Oana Olteanu 2011
We compute the minimal primary decomposition for completely squarefree lexsegment ideals. We show that critical squarefree monomial ideals are sequentially Cohen-Macaulay. As an application, we give a complete characterization of the completely squarefree lexsegment ideals which are sequentially Cohen-Macaulay and we also derive formulas for some homological invariants of this class of ideals.
115 - Luca Amata , Marilena Crupi 2021
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.
This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-free monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا