Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related or have linear resolution. We also consider the so-called squarefree Ratliff property.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We determine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Finally, we give necessary and sufficient conditions for the equality of ordinary and symbolic powers of naturally oriented lines.
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e., $u otin I^{k}$ and $ux_{i} in I^{k}$ for $1 leq i leq n$. We prove that if a monomial $x_1^{a_1}cdots x_n^{a_n}$ belongs to $Soc(S/I^{k})$, then $a_ileq k-1$ for all $1 leq i leq n$. We then discuss squarefree monomial ideals $I subset S$ for which $x_{[n]}^{k-1} in Soc(S/I^{k})$, where $x_{[n]} = x_{1}x_{2}cdots x_{n}$. Furthermore, we give a combinatorial characterization of finite graphs $G$ on $[n] = {1, ldots, n}$ for which $depth S/(I_{G})^{2}=0$, where $I_{G}$ is the edge ideal of $G$.
In this paper, we define (im, reg)-invariant extension of graphs and propose a new approach for Nevo and Peevas conjecture which said that for any gap-free graph $G$ with $reg(I(G)) = 3$ and for any $k geq 2$, $I(G)^k$ has a linear resolution. Moreover, we consider new conjectures related to the regularity of powers of edge ideals of gap-free graphs.
Let $K$ be a field and $S=K[x_1,...,x_n]$. In 1982, Stanley defined what is now called the Stanley depth of an $S$-module $M$, denoted $sdepth(M)$, and conjectured that $depth(M) le sdepth(M)$ for all finitely generated $S$-modules $M$. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when $M = I / J$ with $J subset I$ being monomial $S$-ideals. Specifically, their method associates $M$ with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in $S$. In particular, if $I_{n,d}$ is the squarefree Veronese ideal generated by all squarefree monomials of degree $d$, we show that if $1le dle n < 5d+4$, then $sdepth(I_{n,d})= floor{binom{n}{d+1}Big/binom{n}{d}}+d$, and if $dgeq 1$ and $nge 5d+4$, then $d+3le sdepth(I_{n,d}) le floor{binom{n}{d+1}Big/binom{n}{d}}+d$.