No Arabic abstract
If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field [...]
Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like adaptive zones, punctuated equilibrium and blunderbuss patterns, require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and the resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterized with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.
The outcome of competition among species is influenced by the spatial distribution of species and effects such as demographic stochasticity, immigration fluxes, and the existence of preferred habitats. We introduce an individual-based model describing the competition of two species and incorporating all the above ingredients. We find that the presence of habitat preference --- generating spatial niches --- strongly stabilizes the coexistence of the two species. Eliminating habitat preference --- neutral dynamics --- the model generates patterns, such as distribution of population sizes, practically identical to those obtained in the presence of habitat preference, provided an higher immigration rate is considered. Notwithstanding the similarity in the population distribution, we show that invasibility properties depend on habitat preference in a non-trivial way. In particular, the neutral model results results more invasible or less invasible depending on whether the comparison is made at equal immigration rate or at equal distribution of population size, respectively. We discuss the relevance of these results for the interpretation of invasibility experiments and the species occupancy of preferred habitats.
We provide a classification of symmetric three-player games with two strategies and investigate evolutionary and asymptotic stability (in the replicator dynamics) of their Nash equilibria. We discuss similarities and differences between two-player and multi-player games. In particular, we construct examples which exhibit a novel behavior not found in two-player games.
A square lattice is introduced into the Penna model for biological aging in order to study the evolution of diploid sexual populations under certain conditions when one single locus in the individuals genome is considered as identifier of species. The simulation results show, after several generations, the flourishing and coexistence of two separate species in the same environment, i.e., one original species splits up into two on the same territory (sympatric speciation). As well, the mortalities obtained are in a good agreement with the Gompertz law of exponential increase of mortality with age.