Do you want to publish a course? Click here

Sympatric speciation in an age-structured population living on a lattice

114   0   0.0 ( 0 )
 Publication date 2004
  fields Biology Physics
and research's language is English
 Authors A.O. Sousa




Ask ChatGPT about the research

A square lattice is introduced into the Penna model for biological aging in order to study the evolution of diploid sexual populations under certain conditions when one single locus in the individuals genome is considered as identifier of species. The simulation results show, after several generations, the flourishing and coexistence of two separate species in the same environment, i.e., one original species splits up into two on the same territory (sympatric speciation). As well, the mortalities obtained are in a good agreement with the Gompertz law of exponential increase of mortality with age.



rate research

Read More

We develop theoretical equivalences between stochastic and deterministic models for populations of individual cells stratified by age. Specifically, we develop a hierarchical system of equations describing the full dynamics of an age-structured multi-stage Markov process for approximating cell cycle time distributions. We further demonstrate that the resulting mean behaviour is equivalent, over large timescales, to the classical McKendrick-von Foerster integro-partial differential equation. We conclude by extending this framework to a spatial context, facilitating the modelling of travelling wave phenomena and cell-mediated pattern formation. More generally, this methodology may be extended to myriad reaction-diffusion processes for which the age of individuals is relevant to the dynamics.
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large-scale social distancing measures appears to be the most effective means of mitigation. Here we use an age-structured SIR model with social contact matrices obtained from surveys and Bayesian imputation to study the progress of the COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization are computed based on case data, age distribution and social contact structure. The impact of social distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with durations are then investigated. A three-week lockdown is found insufficient to prevent a resurgence and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are provided for the reduction in age-structured morbidity and mortality as a result of these measures. Our study underlines the importance of age and social contact structures in assessing the country-specific impact of mitigatory social distancing.
Cyclic dominance of competing species is an intensively used working hypothesis to explain biodiversity in certain living systems, where the evolutionary selection principle would dictate a single victor otherwise. Technically the May--Leonard models offer a mathematical framework to describe the mentioned non-transitive interaction of competing species when individual movement is also considered in a spatial system. Emerging rotating spirals composed by the competing species are frequently observed character of the resulting patterns. But how do these spiraling patterns change when we vary the external environment which affects the general vitality of individuals? Motivated by this question we suggest an off-lattice version of the tradition May--Leonard model which allows us to change the actual state of the environment gradually. This can be done by introducing a local carrying capacity parameter which value can be varied gently in an off-lattice environment. Our results support a previous analysis obtained in a more intricate metapopulation model and we show that the well-known rotating spirals become evident in a benign environment when the general density of the population is high. The accompanying time-dependent oscillation of competing species can also be detected where the amplitude and the frequency show a scaling law of the parameter that characterizes the state of the environment. These observations highlight that the assumed non-transitive interaction alone is insufficient condition to maintain biodiversity safely, but the actual state of the environment, which characterizes the general living conditions, also plays a decisive role on the evolution of related systems.
Environmental changes greatly influence the evolution of populations. Here, we study the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a carrying capacity switching either randomly or periodically between states of abundance and scarcity. The population dynamics is characterized by demographic noise (birth and death events) coupled to a varying environment. We elucidate the similarities and differences of the evolution subject to a stochastically- and periodically-varying environment. Importantly, the population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations, which results in markedly different asymptotic behaviors between the fixation probability of random and periodic switching. We also determine the detailed conditions under which the fixation probability of the slow strain is maximal.
149 - Ohad Vilk , Michael Assaf 2018
In recent years non-demographic variability has been shown to greatly affect dynamics of stochastic populations. For example, non-demographic noise in the form of a bursty reproduction process with an a-priori unknown burst size, or environmental variability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of non-demographic variation. Using the so-called momentum-space WKB approach we arrive at a set of time-dependent Hamilton equations. In order to account for the explicit time dependence, we find the instanton of the time-perturbed Hamiltonian numerically, where analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically-varying rates corresponding to seasonal effects, and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا