Do you want to publish a course? Click here

Coexistence and invasibility in a two-species competition model with habitat-preference

125   0   0.0 ( 0 )
 Added by Cencini Massimo Dr.
 Publication date 2010
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The outcome of competition among species is influenced by the spatial distribution of species and effects such as demographic stochasticity, immigration fluxes, and the existence of preferred habitats. We introduce an individual-based model describing the competition of two species and incorporating all the above ingredients. We find that the presence of habitat preference --- generating spatial niches --- strongly stabilizes the coexistence of the two species. Eliminating habitat preference --- neutral dynamics --- the model generates patterns, such as distribution of population sizes, practically identical to those obtained in the presence of habitat preference, provided an higher immigration rate is considered. Notwithstanding the similarity in the population distribution, we show that invasibility properties depend on habitat preference in a non-trivial way. In particular, the neutral model results results more invasible or less invasible depending on whether the comparison is made at equal immigration rate or at equal distribution of population size, respectively. We discuss the relevance of these results for the interpretation of invasibility experiments and the species occupancy of preferred habitats.



rate research

Read More

Adaptive dynamics is a widely used framework for modeling long-term evolution of continuous phenotypes. It is based on invasion fitness functions, which determine selection gradients and the canonical equation of adaptive dynamics. Even though the derivation of the adaptive dynamics from a given invasion fitness function is general and model-independent, the derivation of the invasion fitness function itself requires specification of an underlying ecological model. Therefore, evolutionary insights gained from adaptive dynamics models are generally model-dependent. Logistic models for symmetric, frequency-dependent competition are widely used in this context. Such models have the property that the selection gradients derived from them are gradients of scalar functions, which reflects a certain gradient property of the corresponding invasion fitness function. We show that any adaptive dynamics model that is based on an invasion fitness functions with this gradient property can be transformed into a generalized symmetric competition model. This provides a precise delineation of the generality of results derived from competition models. Roughly speaking, to understand the adaptive dynamics of the class of models satisfying a certain gradient condition, one only needs a complete understanding of the adaptive dynamics of symmetric, frequency-dependent competition. We show how this result can be applied to number of basic issues in evolutionary theory.
Empirical observations in marine ecosystems have suggested a balance of biological and advection time scales as a possible explanation of species coexistence. To characterise this scenario, we measure the time to fixation in neutrally evolving populations in chaotic flows. Contrary to intuition the variation of time scales does not interpolate straightforwardly between the no-flow and well-mixed limits; instead we find that fixation is the slowest at intermediate Damkohler numbers, indicating long-lasting coexistence of species. Our analysis shows that this slowdown is due to spatial organisation on an increasingly modularised network. We also find that diffusion can either slow down or speed up fixation, depending on the relative time scales of flow and evolution.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterized with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.
Cooperative interactions pervade the dynamics of a broad rage of many-body systems, such as ecological communities, the organization of social structures, and economic webs. In this work, we investigate the dynamics of a simple population model that is driven by cooperative and symmetric interactions between two species. We develop a mean-field and a stochastic description for this cooperative two-species reaction scheme. For an isolated population, we determine the probability to reach a state of fixation, where only one species survives, as a function of the initial concentrations of the two species. We also determine the time to reach the fixation state. When each species can migrate into the population and replace a randomly selected individual, the population reaches a steady state. We show that this steady-state distribution undergoes a unimodal to trimodal transition as the migration rate is decreased beyond a critical value. In this low-migration regime, the steady state is not truly steady, but instead fluctuates strongly between near-fixation states of the two species. The characteristic time scale of these fluctuations diverges as $lambda^{-1}$.
Two species with similar resource requirements respond in a characteristic way to variations in their habitat -- their abundances rise and fall in concert. We use this idea to learn how bacterial populations in the microbiota respond to habitat conditions that vary from person-to-person across the human population. Our mathematical framework shows that habitat fluctuations are sufficient for explaining intra-bodysite correlations in relative species abundances from the Human Microbiome Project. We explicitly show that the relative abundances of phylogenetically related species are positively correlated and can be predicted from taxonomic relationships. We identify a small set of functional pathways related to metabolism and maintenance of the cell wall that form the basis of a common resource sharing niche space of the human microbiota.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا