Do you want to publish a course? Click here

Coproduct for affine Yangians and parabolic induction for rectangular $W$-algebras

71   0   0.0 ( 0 )
 Added by Ryosuke Kodera
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We construct algebra homomorphisms from affine Yangians to the current algebras of rectangular $W$-algebras both in type A. The construction is given via the coproduct and the evaluation map for the affine Yangians. As a consequence, we show that parabolic inductions for representations of the rectangular $W$-algebras can be regarded as tensor product representations of the affine Yangians under the homomorphisms. The same method is applicable also to the super setting.



rate research

Read More

59 - Ryosuke Kodera 2018
We give a detailed proof of the existence of evaluation map for affine Yangians of type A to clarify that it needs an assumption on parameters. This map was first found by Guay but a proof of its well-definedness and the assumption have not been written down in the literature. We also determine the highest weights of evaluation modules defined as the pull-back of integrable highest weight modules of the affine Lie algebra $hat{mathfrak{gl}}_N$ by the evaluation map.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $Lambda$ and $Lambda^infty$ introduced by the authors. We next define the reflections $mathcal{S}_k$ and $mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp. complete) duality datum, then $mathcal{S}_k(D)$ and $mathcal{S}_k^{-1}(D)$ are also strong (resp. complete ) duality data. We finally introduce the notion of affine cuspidal modules in $mathcal{C}_{mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.
481 - C. Briot , E. Ragoucy 2013
We present a connection between W-algebras and Yangians, in the case of gl(N) algebras, as well as for twisted Yangians and/or super-Yangians. This connection allows to construct an R-matrix for the W-algebras, and to classify their finite-dimensional irreducible representations. We illustrate it in the framework of nonlinear Schroedinger equation in 1+1 dimension.
We introduce and investigate new invariants on the pair of modules $M$ and $N$ over quantum affine algebras $U_q(mathfrak{g})$ by analyzing their associated R-matrices. From new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable $U_q(mathfrak{g})$-modules to become a monoidal categorification of a cluster algebra.
We show that ${rm End}_{bf U}(V_lambdaotimes V^{otimes n})$ is generated by the affine braid group $AB_n$ where ${bf U}=U_qmathfrak g(G_2)$, $V$ is its 7-dimensional irreducible representation and $V_lambda$ is an arbitrary irreducible representation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا