Do you want to publish a course? Click here

Morphotropic interfaces in PMN-PT single crystals

117   0   0.0 ( 0 )
 Added by Jirka Hlinka
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paper describes heterostructures spontaneously formed in PMN-PT single crystals cooled under bias electric field applied along [001]pc and then zero-field-heated in the vicinity of the so-called depoling temperature. In particular, formation of lamellar structures composed of tetragonal-like and rhombohedral-like layers extending over macroscopic (mm) lengths is demonstrated by optical observations and polarized Raman investigations.



rate research

Read More

Lead-magnesium niobate lead-titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the micro-machining of PMN-PT thin films or bulk substrates. Approaches reported up to date include chemical etching, excimer laser ablation and ion milling. To ensure an excellent device performance, a key mandatory feature for a micro-machining process is to preserve as far as possible the crystalline quality of the substrates; in other words, the fabrication method must induce a low density of cracks and other kind of defects. In this work, we demonstrate a relatively fast procedure for the fabrication of high-quality PMN-PT micro-machined actuators employing green femtosecond laser pulses. The fabricated devices feature absence of extended cracks and well defined edges with relatively low roughness, which is advantageous for the further integration of nanomaterials onto the piezoelectric actuators.
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the LLG equation, with magnetostriction effect taken into account, is developed to explain the measured dynamics. Based on this model, conditions for strong electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.
We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMNPT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.
192 - M. Valvidares , N. Dix , M. Isasa 2015
Ultra-thin Pt films grown on insulating ferrimagnetic CoFe2O4 (111) epitaxial films display a magnetoresistance upon rotating the magnetization of the magnetic layer. We report here X-ray magnetic circular dichroism (XMCD) recorded at Pt-L2,3 and Pt-M3 edges. The results indicate that the Pt magnetic moment, if any, is below the detection limit (< 0.001 {mu}$_B$/Pt), thus strongly favoring the view that the presence of CoFe2O4 does not induce the formation of magnetic moments in Pt. Therefore, the observed magnetoresistance cannot be attributed to some sort of proximity-induced magnetic moments at Pt ions and subsequent magnetic-field dependent scattering. It thus follows that either bulk (spin Hall and Inverse spin Hall Effects) or interface (Rashba) spin-orbit related effects dominate the observed magnetoresistance. Furthermore, comparison of bulk magnetization and XMCD data at (Fe,Co)-L2,3 edges suggests the presence of some spin disorder in the CoFe2O4 layer which may be relevant for the observed anomalous non-saturating field-dependence of spin Hall magnetoresistance.
101 - V. Bovtun , S. Kamba , S. Veljko 2008
Dielectric response e*(f,T) and polar phonon spectra of coarse grain (grain size ~ 4 mkm) and fine grain (grain size ~ 150 nm) ceramics of PbMg_(1/3)Nb_(2/3)O3-35%PbTiO3 were investigated at temperatures 10 - 900 K. e*(f,T) in coarse-grain ceramics exhibits relaxor behavior at high temperatures and a sharp anomaly at the ferroelectric phase transition. The fine-grain ceramics exhibit mainly relaxor ferroelectric behavior with a smaller dielectric constant. The difference is explained by different relaxational dynamics of polar nanoclusters, which appear to be more stabilized at high temperatures in the fine-grain ceramics by pinning at grain boundaries. Below Tc, the growth of ferroelectric domains is suppressed in fine-grain ceramics as supported also by a second harmonic generation. On the other hand, polar phonon frequencies and their temperature dependences are almost independent of the grain size, but the selection rules for the cubic symmetry are not obeyed and all phonons are split due to a locally broken symmetry by polar nanoregions and chemical disorder. The lowest-frequency polar phonon undergoes partial softening down to ~ 0.1 THz near Tc = 440 K in both ceramics, but the dielectric anomaly is caused predominantly by flipping and breathing of polar nanoclusters. Due to contribution of both the soft phonon mode and dielectric relaxations into the dielectric constant, the ferroelectric phase transition, which corresponds to the percolation threshold of the polar nanoregions into macroscopic domains, can be considered as a special case of crossover between the displacive and order-disorder type.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا