We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMNPT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the LLG equation, with magnetostriction effect taken into account, is developed to explain the measured dynamics. Based on this model, conditions for strong electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.
We experimentally investigate spin-orbit torques and spin pumping in NiFe/Pt bilayers with direct and interrupted interfaces. The damping-like and field-like torques are simultaneously measured with spin-torque ferromagnetic resonance tuned by a dc bias current, whereas spin pumping is measured electrically through the inverse spin Hall effect using a microwave cavity. Insertion of an atomically thin Cu dusting layer at the interface reduces the damping-like torque, field-like torque, and spin pumping by nearly the same factor of ~1.4. This finding confirms that the observed spin-orbit torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We also find that spin-current scattering at the NiFe/Pt interface contributes to additional enhancement in magnetization damping that is distinct from spin pumping.
In this work, we report our study on the THz emission in Fe/Pt magnetic heterostructures. We have carried out a comprehensive investigation of THz emission from Fe/Pt magnetic heterostructures, employing time-domain THz spectroscopy. We reveal that by properly tuning the thickness of Fe or Pt layer, THz emission can be greatly improved in this type of heterostructure. We further demonstrate that the THz field strength emitted from a newly designed multilayer (Pt/Fe/MgO)$_n$ with n=3 can reach a value of ~1.6 kV/cm, which is comparable to the values from the conventional GaAs antenna with a bias of 4 kV/cm, and the nonlinear crystals, e.g., 100 micrometer GaP and 2 mm ZnTe. For the first time, the intensity and spectrum of THz wave is demonstrated to be tunable by the magnetic field applied on the patterned magnetic Fe/Pt heterostructures. These findings thus promise novel approaches to fabricate powerful and tunable THz emitters based on magnetic heterostructure.
The paper describes heterostructures spontaneously formed in PMN-PT single crystals cooled under bias electric field applied along [001]pc and then zero-field-heated in the vicinity of the so-called depoling temperature. In particular, formation of lamellar structures composed of tetragonal-like and rhombohedral-like layers extending over macroscopic (mm) lengths is demonstrated by optical observations and polarized Raman investigations.
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation and a change in the rate of domain wall fluctuation as a function of the applied electric field to the sample. We also observe the coexistence of in-plane and out of plane magnetization in Pt/Co/Pt heterostructures in a region around the spin reorientation transition whose formation is attributed to substrate surface roughness comparable to the film thickness; with such domain configuration, we find that the in-plane magnetization is more sensitive to the applied electric field than out of plane magnetization. Although we find an effective magnetoelectric coupling in our system, the presence of charge defects in the silicon nitride membranes hampers a systematic electrostatic control of the magnetization.