We show that the number of solutions of Schroedinger Maxwell system on a smooth bounded domain in R^3 depends on the topological properties of the domain. In particular we consider the Lusternik-Schnirelmann category and the Poincare polynomial of the domain.
Given a 3-dimensional Riemannian manifold (M,g), we investigate the existence of positive solutions of the nonlinear Klein-Gordon-Maxwell system and nonlinear Schroedinger-Maxwell system with subcritical nonlinearity. We prove that the number of one peak solutions depends on the topological properties of the manifold M, by means of the Lusternik Schnirelmann category.
We consider the dynamics of a quantum particle of mass $m$ on a $n$-edges star-graph with Hamiltonian $H_K=-(2m)^{-1}hbar^2 Delta$ and Kirchhoff conditions in the vertex. We describe the semiclassical limit of the quantum evolution of an initial state supported on one of the edges and close to a Gaussian coherent state. We define the limiting classical dynamics through a Liouville operator on the graph, obtained by means of Kreu{i}ns theory of singular perturbations of self-adjoint operators. For the same class of initial states, we study the semiclassical limit of the wave and scattering operators for the couple $(H_K,H_{D}^{oplus})$, where $H_{D}^{oplus}$ is the free Hamiltonian with Dirichlet conditions in the vertex.
We obtain time dependent $q$-Gaussian wave-packet solutions to a non linear Schrodinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like solutions ($q$-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the $q$-generalized thermostatistical formalism, is characterized by a parameter $q$, and in the limit $q to 1$ reduces to the standard, linear Schrodinger equation. The $q$-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known $q$-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the $q to 1$ limit the $q$-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrodinger equation. In the present work we also show that there are other families of nonlinear Schrodinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.
Four generalizations of the Phase Integral Approximation (PIA) to sets of N ordinary differential equations of the Schroedinger type: u_j(x) + Sum{k = 1 to N} R_{jk}(x) u_k(x) = 0, j = 1 to N, are described. The recurrence relations for higher order corrections are given in the form valid in arbitrary order and for the matrix R_{jk} either hermitian or non-hermitian. For hermitian and negative definite R matrices, the Wronskian conserving PIA theory is formulated which generalizes Fullings current conserving theory pertinent to positive definite R matrices. The idea of a modification of the PIA, well known for one equation: u(x) + R(x) u(x) = 0, is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a non-degenerate eigenvalue of the R matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-hermitian R matrices. General theory is illustrated by a few examples generated automatically by using authors program in Mathematica, published in arXiv:0710.5406.
Marco Ghimenti
,Anna Maria Micheletti
.
(2013)
.
"Low energy solutions for the semiclassical limit of Schroedinger Maxwell systems"
.
Marco Ghimenti Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا