No Arabic abstract
We obtain time dependent $q$-Gaussian wave-packet solutions to a non linear Schrodinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like solutions ($q$-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the $q$-generalized thermostatistical formalism, is characterized by a parameter $q$, and in the limit $q to 1$ reduces to the standard, linear Schrodinger equation. The $q$-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known $q$-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the $q to 1$ limit the $q$-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrodinger equation. In the present work we also show that there are other families of nonlinear Schrodinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.
We try to obtain meromorphic solution of Time dependent Schroedinger equation which partially satisfies Painleve Integrable property. Our study and analysis exhibits meromorphic behavior of classical particle trajectory. In other words, particle is confined in punctured complex domain in singular fundamental domain. . We have explicitly developed solution from Jacobi Elliptic function and pole expansion approach in which solution remains meromorphic . Branch point analysis also shows solution branches out near such singular point. Meromorphic behavior is significant for a classical particle within quantum limit.
We give a pedagogical introduction of the stochastic variational method by considering the quantization of a non-inertial particle system. We show that the effects of fictitious forces are represented in the forms of vector fields which behave analogous to the gauge fields in the electromagnetic interaction. We further discuss that the operator expressions for observables can be defined by applying the stochastic Noether theorem.
this paper we show some new exact solutions for the generalized modified Degasperis$-$Procesi equation (mDP equation)
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We have approximated for non s-waves the centrifugal term by an exponential form. The energy eigenvalue equations, and the corresponding wave functions are obtained by using the generalization of the Nikiforov-Uvarov method.
We solve the time-dependent Schrodinger equation describing the emission of electrons from a metal surface by an external electric field $E$, turned on at $t=0$. Starting with a wave function $psi(x,0)$, representing a generalized eigenfunction when $E=0$, we find $psi(x,t)$ and show that it approaches, as $ttoinfty$, the Fowler-Nordheim tunneling wavefunction $psi_E$. The deviation of $psi$ from $psi_E$ decays asymptotically as a power law $t^{-frac32}$. The time scales involved for typical metals and fields of several V/nm are of the order of femtoseconds.