Do you want to publish a course? Click here

Pseudo-Hermitian and PT -symmetric quantum systems with energy-dependent potentials: Bound-state solutions and energy spectra

73   0   0.0 ( 0 )
 Added by Pinaki Roy
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce generaliz



rate research

Read More

This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
Eigenspectra of a spinless quantum particle trapped inside a rigid, rectangular, two-dimensional (2D) box subject to diverse inner potential distributions are investigated under hermitian, as well as non-hermitian antiunitary $mathcal{PT}$ (composite parity and time-reversal) symmetric regimes. Four sectors or stripes inscribed in the rigid box comprising contiguously conjoined parallel rectangular segments with one side equaling the entire width of the box are studied. The stripes encompass piecewise constant potentials whose exact, complete energy eigenspectrum is obtained employing matrix mechanics. Various striped potential compositions, viz. real valued ones in the hermitian regime as well as complex, non-hermitian but $mathcal{PT}$ symmetric ones are considered separately and in conjunction, unraveling among typical lowest lying eigenvalues, retention and breakdown scenarios engendered by the $mathcal{PT}$ symmetry, bearing upon the strength of non-hermitian sectors. Some states exhibit a remarkable crossover of symmetry `making and `breaking: while a broken $mathcal{PT}$ gets reinstated for an energy level, higher levels may couple to continue with symmetry breaking. Further, for a charged quantum particle a $mathcal{PT}$ symmetric electric field, furnished with a striped potential backdrop, also reveals peculiar retention and breakdown $mathcal{PT}$ scenarios. Depictions of prominent probability redistributions relating to various potential distributions both under norm-conserving unitary regime for hermitian Hamiltonians and non-conserving ones post $mathcal{PT}$ breakdown are presented.
150 - Zichao Wen , Carl M. Bender 2020
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric potentials are studied: the Scarf-II potential $V_1(x)=iA_1,{rm sech}(x)tanh(x)$, which decays exponentially for large $|x|$; the rational potentials $V_2(x)=iA_2,x/(1+x^4)$ and $V_3(x)=iA_3,x/(1+|x|^3)$, which decay algebraically for large $|x|$; the step-function potential $V_4(x)=iA_4,{rm sgn}(x)theta(2.5-|x|)$, which has compact support; the regulated Coulomb potential $V_5(x)=iA_5,x/(1+x^2)$, which decays slowly as $|x|toinfty$ and may be viewed as a long-range potential. The real parameters $A_n$ measure the strengths of these potentials. Numerical techniques for solving the time-independent Schrodinger eigenvalue problems associated with these potentials reveal that the spectra of the corresponding Hamiltonians exhibit universal properties. In general, the eigenvalues are partly real and partly complex. The real eigenvalues form the continuous part of the spectrum and the complex eigenvalues form the discrete part of the spectrum. The real eigenvalues range continuously in value from $0$ to $+infty$. The complex eigenvalues occur in discrete complex-conjugate pairs and for $V_n(x)$ ($1leq nleq4$) the number of these pairs is finite and increases as the value of the strength parameter $A_n$ increases. However, for $V_5(x)$ there is an {it infinite} sequence of discrete eigenvalues with a limit point at the origin. This sequence is complex, but it is similar to the Balmer series for the hydrogen atom because it has inverse-square convergence.
201 - Da-Jian Zhang , Qing-hai Wang , 2019
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of research was made possible by the introduction of a time-independent metric operator to redefine the inner product of a Hilbert space. To treat the dynamics of generic non-Hermitian systems under equal footing, we advocate in this work the use of a time-dependent metric operator for the inner-product between time-evolving states. This treatment makes it possible to always interpret the dynamics of arbitrary (finite-dimensional) non-Hermitian systems in the framework of time-dependent $mathcal{PT}$-symmetric quantum mechanics, with unitary time evolution, real eigenvalues of an energy observable, and quantum measurement postulate all restored. Our work sheds new lights on generic non-Hermitian systems and spontaneous $mathcal{PT}$-symmetry breaking in particular. We also illustrate possible applications of our formulation with well-known examples in quantum thermodynamics.
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا