We report evolution of the two-dimensional electron gas behavior at the NdAlO3/SrTiO3 heterointerfaces with varying thicknesses of the NdAlO3 overlayer. The samples with a thicker NdAlO3 show strong localizations at low temperatures and the degree of localization is found to increase with the NdAlO3 thickness. The T -1/3 temperature dependence of the sheet resistance at low temperatures and the magnetoresistance study reveal that the conduction is governed by a two-dimensional variable range hopping mechanism in this strong localized regime. We attribute this thickness dependence of the transport properties of the NdAlO3/SrTiO3 interfaces to the interface strain induced by the overlayers.
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected relation $rho(B_perp) = rho_{rm{B}}exp(alpha B_perp^2)$. The prefactor $rho_{rm{B}}$ decreases exponentially with increasing electron density but saturates to a finite value at higher densities. Strikingly, this value is found to be universal when expressed in terms of absolute resistance and and shows quantisation at $R_{rm{B}}approx h/e^2$ and $R_{rm{B}}approx 1/2$ $ h/e^2$. We suggest a strongly correlated electronic phase as a possible explanation.
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces presents an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunction is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3 , the experiment reveals the evidence for magnetic phase separation in hole-doped Ti d1 t2g system resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators thus providing another path for designing all-oxide structures relevant to spintronics applications.
The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel gamma-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1E15 cm-2. Herein, we report on the patterning of 2DEG at the gamma-Al2O3/SrTiO3 interface grown at 650 {deg}C by pulsed laser deposition using a hard mask of LaMnO3. The patterned 2DEG exhibits a critical thickness of 2 unit cells of gamma-Al2O3 for the occurrence of interface conductivity, similar to the unpatterned sample. However, its maximum carrier density is found to be approximately 3E13 cm-2, much lower than that of the unpatterned sample (1E15 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of 7E12 cm-2, which exhibits clear Shubnikov-de Hass quantum oscillations. The patterned high-mobility 2DEG at the gamma-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devices.
We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO3 (111) surface. We find an evidence of a spin-split band structure with the archetypal spin-momentum locking of the Rashba effect for the in-plane component. Under an out-of-plane magnetic field, we find a BMER signal that breaks the six-fold symmetry of the electronic dispersion, which is a fingerprint for the presence of a momentum dependent out-of-plane spin component. Relativistic electronic structure calculations reproduce this spin-texture and indicate that the out-of-plane component is a ubiquitous property of oxide 2DEGs arising from strong crystal field effects. We further show that the BMER response of the SrTiO3 (111) 2DEG is tunable and unexpectedly large.
A two-dimensional electron gas (2DEG) in SrTiO3 is created via modulation doping by interfacing undoped SrTiO3 with a wider-band-gap material, SrTi1-xZrxO3, that is doped n-type with La. All layers are grown using hybrid molecular beam epitaxy. Using magnetoresistance measurements, we show that electrons are transferred into the SrTiO3, and a 2DEG is formed. In particular, Shubnikov-de Haas oscillations are shown to depend only on the perpendicular magnetic field. Experimental Shubnikov-de Haas oscillations are compared with calculations that assume multiple occupied subbands.
A. Annadi
,A. Putra
,A. Srivastava
.
(2013)
.
"Evolution of variable range hopping in strongly localized two dimensional electron gas at NdAlO3/SrTiO3 (100) heterointerfaces"
.
Anil Annadi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا