Do you want to publish a course? Click here

Observation of out-of-plane spin texture in a SrTiO3 (111) two-dimensional electron gas

256   0   0.0 ( 0 )
 Added by Pan He
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO3 (111) surface. We find an evidence of a spin-split band structure with the archetypal spin-momentum locking of the Rashba effect for the in-plane component. Under an out-of-plane magnetic field, we find a BMER signal that breaks the six-fold symmetry of the electronic dispersion, which is a fingerprint for the presence of a momentum dependent out-of-plane spin component. Relativistic electronic structure calculations reproduce this spin-texture and indicate that the out-of-plane component is a ubiquitous property of oxide 2DEGs arising from strong crystal field effects. We further show that the BMER response of the SrTiO3 (111) 2DEG is tunable and unexpectedly large.



rate research

Read More

229 - E. Nakhmedov , O. Alekperov 2012
Equilibrium spin-current is calculated in a quasi-two-dimensional electron gas with finite thickness under in-plane magnetic field and in the presence of Rashba- and Dresselhaus spin-orbit interactions. The transverse confinement is modeled by means of a parabolic potential. An orbital effect of the in-plane magnetic field is shown to mix a transverse quantized spin-up state with nearest-neighboring spin-down states. The out-off-plane component of the equilibrium spin current appears to be not zero in the presence of an in-plane magnetic field, provided at least two transverse-quantized levels are filled. In the absence of the magnetic field the obtained results coincide with the well-known results, yielding cubic dependence of the equilibrium spin current on the spin-orbit coupling constants. The persistent spin-current vanishes in the absence of the magnetic field if Rashba- and Dresselhaus spin-orbit coefficients,{alpha} and {beta}, are equal each other. In-plane magnetic field destroys this symmetry, and accumulates a finite spin-current as {alpha} rightarrow {beta}. Magnetic field is shown to change strongly the equilibrium current of the in-plane spin components, and gives new contributions to the cubic-dependent on spin-orbit constants terms. These new terms depend linearly on the spin-orbit constants.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
A two-dimensional electron gas (2DEG) in SrTiO3 is created via modulation doping by interfacing undoped SrTiO3 with a wider-band-gap material, SrTi1-xZrxO3, that is doped n-type with La. All layers are grown using hybrid molecular beam epitaxy. Using magnetoresistance measurements, we show that electrons are transferred into the SrTiO3, and a 2DEG is formed. In particular, Shubnikov-de Haas oscillations are shown to depend only on the perpendicular magnetic field. Experimental Shubnikov-de Haas oscillations are compared with calculations that assume multiple occupied subbands.
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces presents an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunction is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3 , the experiment reveals the evidence for magnetic phase separation in hole-doped Ti d1 t2g system resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators thus providing another path for designing all-oxide structures relevant to spintronics applications.
We present a method to create spin-polarized beams of ballistic electrons in a two-dimensional electron system in the presence of spin-orbit interaction. Scattering of a spin-unpolarized injected beam from a lithographic barrier leads to the creation of two fully spin-polarized side beams, in addition to an unpolarized specularly reflected beam. Experimental magnetotransport data on InSb/InAlSb heterostructures demonstrate the spin-polarized reflection in a mesoscopic geometry, and confirm our theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا