Do you want to publish a course? Click here

Supernovae and Cosmology with Future European Facilities

119   0   0.0 ( 0 )
 Added by Isobel Hook
 Publication date 2012
  fields Physics
and research's language is English
 Authors I. M. Hook




Ask ChatGPT about the research

Prospects for future supernova surveys are discussed, focusing on the ESA Euclid mission and the European Extremely Large Telescope(E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned general-purpose ground-based 40m-class optical-IR telescope with adaptive optics built in, which will be capable of obtaining spectra of Type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programs such as those proposed for DES, JWST, LSST and WFIRST.



rate research

Read More

We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the Search Using DECam for Superluminous Supernovae (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10,000 LSST-like SLSNe can measure Omega_m and w to 2% and 4% respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2%, 5% and 14% on Omega_m, w_0 and w_a respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high redshift Universe.
We present the Democratic Samples of Supernovae (DSS), a compilation of 775 low-redshift Type Ia and II supernovae (SNe Ia & II), of which 137 SN Ia distances are derived via the newly developed snapshot distance method. Using the objects in the DSS as tracers of the peculiar-velocity field, we compare against the corresponding reconstruction from the 2M++ galaxy redshift survey. Our analysis -- which takes special care to properly weight each DSS subcatalogue and cross-calibrate the relative distance scales between them -- results in a measurement of the cosmological parameter combination $fsigma_8 = 0.390_{-0.022}^{+0.022}$ as well as an external bulk flow velocity of $195_{-23}^{+22}$ km s$^{-1}$ in the direction $(ell, b) = (292_{-7}^{+7}, -6_{-4}^{+5})$ deg, which originates from beyond the 2M++ reconstruction. Similarly, we find a bulk flow of $245_{-31}^{+32}$ km s$^{-1}$ toward $(ell, b) = (294_{-7}^{+7}, 3_{-5}^{+6})$ deg on a scale of $sim 30 h^{-1}$ Mpc if we ignore the reconstructed peculiar-velocity field altogether. Our constraint on $fsigma_8$ -- the tightest derived from SNe to date (considering only statistical error bars), and the only one to utilise SNe II -- is broadly consistent with other results from the literature. We intend for our data accumulation and treatment techniques to become the prototype for future studies that will exploit the unprecedented data volume from upcoming wide-field surveys.
Type Ia Supernovae have yet again the opportunity to revolutionize the field of cosmology as the new generation of surveys are acquiring thousands of nearby SNeIa opening a new era in cosmology: the direct measurement of the growth of structure parametrized by $fD$. This method is based on the SNeIa peculiar velocities derived from the residual to the Hubble law as direct tracers of the full gravitational potential caused by large scale structure. With this technique, we could probe not only the properties of dark energy, but also the laws of gravity. In this paper we present the analytical framework and forecasts. We show that ZTF and LSST will be able to reach 5% precision on $fD$ by 2027. Our analysis is not significantly sensitive to photo-typing, but known selection functions and spectroscopic redshifts are mandatory. We finally introduce an idea of a dedicated spectrograph that would get all the required information in addition to boost the efficiency to each SNeIa so that we could reach the 5% precision within the first two years of LSST operation and the few percent level by the end of the survey.
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard $Lambda$CDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constants
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا